

UAS COLLISION AVOIDANCE ALGORITHM THAT MINIMIZES THE
IMPACT ON ROUTE SURVEILLANCE

THESIS

Austin L. Smith

AFIT/GAE/ENY/09-M18

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GAE/ENY/09-M18

UAS COLLISION AVOIDANCE ALGORITHM THAT MINIMIZES THE
IMPACT ON ROUTE SURVEILLANCE

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Austin L. Smith, BS

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GAE/ENY I09-M18

VAS COLLISION AVOIDANCE ALGORITHM THAT MINIMIZES THE
IMP ACT ON ROUTE SURVEILLANCE

Austin L. Smith, BS

Approved:

13 ;!fa/' ()1
Date

13 /'1;4,£ Oer
Date

iv

AFIT/GAE/ENY/09-M18

Abstract

A collision avoidance algorithm is developed and implemented that is applicable

to different types of unmanned aerial systems ranging from a single platform with the

ability to perform all collision avoidance functions independently to multiple vehicles

performing functions as a cooperative group with collision avoidance commands

computed at a ground station. The algorithm draws on the unique benefits of several

theoretical approaches to conflict detection and resolution and combines them into one

algorithm while addressing the limitations of those individual methods. Techniques and

concepts from the three theoretical fields of robotics, homing guidance, and airspace

management are used to complete the algorithm. The algorithm is developed with a focus

on current Air Force systems used in route surveillance missions in hostile environments.

The collision avoidance system is exercised and tested using hardware and platforms

from the Advanced Navigation Technology Center at the Air Force Institute of

Technology.

The results presented are the first known flight tests of a global, three-

dimensional, geometric collision avoidance system on an unmanned aircraft system.

Novel developments using an aggregated collision cone approach allows each unmanned

aircraft to detect and avoid collisions with one or more other aircraft simultaneously. The

collision avoidance system is implemented using a miniature unmanned aircraft with an

onboard autopilot. Various simulation and flight test cases are used to demonstrate the

algorithm’s robustness to different collision encounters at various engagement angles.

The flight test results are compared with ideal, software-in-the-loop, and hardware-in-the-

loop tests.

v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Lt Col Fred

Harmon, for his guidance and support throughout the course of this thesis effort. The

insight, direction, and advice were certainly appreciated. I would also like to thank the

Route Surveillance team, as well as Mr. Don Smith and Mr. John McNees, for their

assistance and flight test support.

I would also like to thank my parents for instilling in me the character, dedication,

and proper work ethic required to complete tasks such as these. Lastly, and foremost, I

would like to thank my wife for providing the support and motivation I needed over the

past few years; you are my source of inspiration.

 Austin L. Smith

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xvi

List of Abbreviations .. xvii

I. Introduction ..1

1. Background ...1

2. Motivation ...2

3. Problem Statement ..3

4. Research Objectives/Hypothesis ...4

5. Research Focus ..5

6. Methodology ...7

7. Assumptions/Scope ...9

8. Preview ..10

II. Literature Review ..11

1. Chapter Overview ...11

2. Methods ...12

2.1. Geometric ...12

2.2. Force Field ...15

2.3. Probabilistic ...17

2.4. Other Methods ...18

vii

Page

3. Flight Tests and Notable Simulations ...19

4. Summary ...22

III. Methodology ..24

1. Chapter Overview ...24

2. Theory and Algorithms ...26

3. Hardware ...39

4. Implementation..44

4.1. MATLAB Algorithm Deployment ..44

4.2. C++ Application and GUI Development ...45

4.3. Collision Avoidance Algorithm/Autopilot Interface51

IV. Analysis and Results ..53

1. Chapter Overview ...53

2. Simulation Results...55

2.1. Ideal..55

2.2. Software-in-the-Loop ...63

2.3. Hardware-in-the-Loop ...80

3. Flight Test Results ...94

3.1. Pre-flight Ground Testing ..97

3.2. Flight Testing ...98

3.3. Flight Test Summary..114

V. Conclusions and Recommendations ...116

1. Chapter Overview ...116

viii

Page

2. Conclusions of Research ...116

3. Significance of Research ...117

4. Recommendations for Action..119

5. Recommendations for Future Research ..121

6. Summary ...123

Appendix A: Collision Avoidance Algorithm/Virtual Cockpit Interface124

Appendix B: Collision Cone Boundary Rates ..127

Appendix C: Ideal Simulation Plots ...129

Appendix D: SIL Simulation Plots ...137

Appendix E: HIL Simulation Plots ...146

Appendix F: Flight Test Plots ...155

Appendix G: Flight Test Procedures...164

Appendix H: Collision Avoidance Algorithm MATLAB Code167

Bibliography ..190

Vita ..194

ix

List of Figures

Figure Page

 1-1: Sense and Avoid Components ... 6

 3-1: CA Algorithm Pseudo-Code.. 25

 3-2: Two Dimensional Collision Cone Configurations (a) Single Cone (b) Split Cone (c)

Multiple Intruders, Single and Split Cones [27] .. 27

 3-3: Collision Cone Approach in the Vertical Plane (a) Single Cone (b) Multiple

Intruders, Single and Split Cone [27] ... 29

 3-4: Aggregate Cone Bounds .. 31

 3-5: Full Encounter Description.. 31

 3-6: Guidance Logic Example .. 34

 3-7: BATCAM .. 39

 3-8: Kestrel Autopilot [34].. 41

 3-9: Virtual Cockpit .. 42

 3-10: Collision Avoidance Application GUI .. 46

 3-11: Agent ID Processing .. 49

 3-12: Collision Avoidance Command Processing .. 51

 4-1: Test Case Geometries .. 54

 4-2: Ideal Head-on Simulation Trajectories .. 55

 4-3: Ideal Head-on Simulation Avoidance Algorithm Commands 56

 4-4: Ideal Head-on Simulation Kestrel Autopilot Commands .. 58

 4-5: Ideal Head-on Simulation Range ... 58

x

Page

 4-6: Ideal Head-on Simulation Altitude .. 59

 4-7: Ideal Three-Ship Simulation Trajectories ... 60

 4-8: Ideal Three-Ship Simulation Avoidance Algorithm Commands 61

 4-9: Ideal Three-Ship Simulation Kestrel Commands .. 61

 4-10: Ideal Three-Ship Simulation Range .. 62

 4-11: Ideal Three-Ship Simulation Altitude ... 62

 4-12: Aviones with Agents ... 63

 4-13: SIL Head-on Simulation Trajectories .. 66

 4-14: SIL Head-on Simulation Airspeed Response .. 67

 4-15: SIL Head-on Simulation Turn Rate Response .. 68

 4-16: SIL Head-on Simulation Pitch Response .. 69

 4-17: SIL Head-on Simulation Range... 70

 4-18: SIL Head-on Simulation Altitude .. 71

 4-19: SIL Three-Ship Simulation Trajectories ... 74

 4-20: SIL Three-Ship Simulation Trajectories, Zoomed to Origin 74

 4-21: SIL Three-Ship Simulation Airspeed Avoidance Command 77

 4-22: SIL Three-Ship Simulation Turn Rate Avoidance Command 77

 4-23: SIL Three-Ship Simulation Pitch Avoidance Command 78

 4-24: SIL Three-Ship Simulation Range .. 79

 4-25: SIL Three-Ship Simulation Altitude ... 79

 4-26: Single UAS HIL Set-up ... 80

xi

Page

 4-27: HIL Head-on Simulation Trajectories ... 81

 4-28: HIL Head-on Simulation Altitude ... 82

 4-29: HIL Head-on Simulation Airspeed Avoidance Command 83

 4-30: HIL Head-on Simulation Turn Rate Avoidance Command 84

 4-31: HIL Head-on Simulation Pitch Avoidance Command .. 84

 4-32: HIL Head-on Simulation Range .. 85

 4-33: HIL Three-ship Simulation Trajectories ... 87

 4-34: HIL Three-ship Simulation Trajectories, Zoomed to Origin 88

 4-35: HIL Three-ship Simulation Airspeed Command .. 90

 4-36: HIL Three-ship Simulation Turn Rate Avoidance Command 91

 4-37: HIL Three-ship Simulation Pitch Avoidance Command 91

 4-38: HIL Three-ship Simulation Range .. 93

 4-39: HIL Three-ship Simulation Altitude ... 93

 4-40: Flight Test Ground Control Station ... 94

 4-41: AFIT's BATCAM 1 ... 95

 4-42: Two-Ship Flight Test Waypoints over Camp Atterbury 96

 4-43: Flight Test Approaching Encounter 2 Trajectories ... 99

 4-44: Flight Test Approaching Encounter 2 Range .. 99

 4-45: Flight Test Approaching Encounter 2 Altitude ... 100

 4-46: Flight Test Approaching Encounter 2 Pitch Response .. 102

 4-47: Flight Test Approaching Encounter 2 Airspeed Response.................................. 103

xii

Page

 4-48: Flight Test Approaching Encounter 2 Turn Rate Response 103

 4-49: Flight Test Head-on Encounter 2 Trajectories .. 104

 4-50: Flight Test Head-on Encounter 2 Range ... 106

 4-51: Flight Test Head-on Encounter 2 Altitude .. 106

 4-52: Flight Test Head-on Encounter 2 Pitch Response ... 107

 4-53: Flight Test Head-on Encounter 2 Airspeed Response ... 107

 4-54: Flight Test Head-on Encounter 2 Turn Rate Response 108

 4-55: Flight Test Head-on Encounter 4 Trajectories .. 109

 4-56: Flight Test Head-on Encounter 4 Altitude .. 110

 4-57: Flight Test Head-on Encounter 4 Range ... 110

 4-58: Flight Test Head-on Encounter 4 Pitch Response ... 111

 4-59: Flight Test Head-on Encounter 4 Airspeed Response ... 112

 4-60: Flight Test Head-on Encounter 4 Turn Rate Response 112

 C-1: Ideal Approaching Simulation Trajectories, CPA at 32.9 s 129

 C-2: Ideal Approaching Simulation Avoidance Algorithm Commands 129

 C-3: Ideal Approaching Simulation Kestrel Commands .. 130

 C-4: Ideal Approaching Simulation Range ... 130

 C-5: Ideal Approaching Simulation Altitude .. 131

 C-6: Ideal Abeam Simulation Trajectories, CPA at 23.4 s ... 131

 C-7: Ideal Abeam Simulation Avoidance Algorithm Commands 132

 C-8: Ideal Abeam Simulation Kestrel Commands.. 132

xiii

Page

 C-9: Ideal Abeam Simulation Range .. 133

 C-10: Ideal Abeam Simulation Altitude ... 133

 C-11: Ideal Converging Simulation Trajectories, CPA at 55 s 134

 C-12: Ideal Converging Simulation Avoidance Algorithm Commands 134

 C-13: Ideal Converging Simulation Kestrel Commands .. 135

 C-14: Ideal Converging Simulation Range ... 135

 C-15: Ideal Converging Simulation Altitude .. 136

 D-1: SIL Approaching Simulation Trajectories .. 137

 D-2: SIL Approaching Simulation Airspeed .. 137

 D-3: SIL Approaching Simulation Turn Rate ... 138

 D-4: SIL Approaching Simulation Pitch... 138

 D-5: SIL Approaching Simulation Range ... 139

 D-6: SIL Approaching Simulation Altitude .. 139

 D-7: SIL Abeam Simulation Trajectories ... 140

 D-8: SIL Abeam Simulation Airspeed .. 140

 D-9: SIL Abeam Simulation Turn Rate .. 141

 D-10: SIL Abeam Simulation Pitch .. 141

 D-11: SIL Abeam Simulation Range .. 142

 D-12: SIL Abeam Simulation Altitude ... 142

 D-13: SIL Converging Simulation Trajectories .. 143

 D-14: SIL Converging Simulation Airspeed .. 143

xiv

Page

 D-15: SIL Converging Simulation Turn Rate ... 144

 D-16: SIL Converging Simulation Pitch .. 144

 D-17: SIL Converging Simulation Range... 145

 D-18: SIL Converging Simulation Altitude .. 145

 E-1: HIL Approaching Simulation Trajectories ... 146

 E-2: HIL Approaching Simulation Airspeed Avoidance Command 146

 E-3: HIL Approaching Simulation Turn Rate Avoidance Command 147

 E-4: HIL Approaching Simulation Pitch Avoidance Command 147

 E-5: HIL Approaching Simulation Range .. 148

 E-6: HIL Approaching Simulation Altitude ... 148

 E-7: HIL Abeam Simulation Trajectories ... 149

 E-8: HIL Abeam Simulation Airspeed Avoidance Command 149

 E-9: HIL Abeam Simulation Turn Rate Avoidance Command 150

 E-10: HIL Abeam Simulation Pitch Avoidance Command .. 150

 E-11: HIL Abeam Simulation Range .. 151

 E-12: HIL Abeam Simulation Altitude ... 151

 E-13: HIL Converging Simulation Trajectories ... 152

 E-14: HIL Converging Simulation Airspeed Avoidance Command 152

 E-15: HIL Converging Simulation Turn Rate Avoidance Command 153

 E-16: HIL Converging Simulation Pitch Avoidance Command 153

 E-17: HIL Converging Simulation Range .. 154

xv

Page

 E-18: HIL Converging Simulation Altitude ... 154

 F-1: Flight Test Head-on Encounter 1 Trajectories .. 155

 F-2: Flight Test Head-on Encounter 1 Airspeed Response .. 155

 F-3: Flight Test Head-on Encounter 1 Turn Rate Response ... 156

 F-4: Flight Test Head-on Encounter 1 Pitch Response ... 156

 F-5: Flight Test Head-on Encounter 1 Range ... 157

 F-6: Flight Test Head-on Encounter 1 Altitude .. 157

 F-7: Flight Test Head-on Encounter 3 Trajectories .. 158

 F-8: Flight Test Head-on Encounter 3 Airspeed Response .. 158

 F-9: Flight Test Head-on Encounter 3 Turn Rate Response ... 159

 F-10: Flight Test Head-on Encounter 3 Pitch Response ... 159

 F-11: Flight Test Head-on Encounter 3 Range ... 160

 F-12: Flight Test Head-on Encounter 3 Altitude .. 160

 F-13: Flight Test Approaching Encounter 1 Trajectories ... 161

 F-14: Flight Test Approaching Encounter 1 Airspeed Response 161

 F-15: Flight Test Approaching Encounter 1 Turn Rate Response 162

 F-16: Flight Test Approaching Encounter 1 Pitch Response .. 162

 F-17: Flight Test Approaching Encounter 1 Range .. 163

 F-18: Flight Test Approaching Encounter 1 Altitude ... 163

xvi

List of Tables

Table Page

 3-1: Guidance Law Angular Rate Matrix, Horizontal Plane .. 34

 3-2: Guidance Law Angular Rate Matrix, Vertical Plane ... 34

 3-3: Cooperation/Coordination Matrix ... 38

 3-4: BATCAM Platform/System Characteristics [32] .. 40

 3-5: Collision Avoidance Algorithm Function Descriptions .. 43

 3-6: Necessary MATLAB Compiler Generated Files .. 44

 3-7: User Parameters, CA GUI ... 47

 4-1: Manual Mode Collision Avoidance Autopilot Settings .. 64

 4-2: SIL Simulation Results, Key Statistics .. 72

 4-3: SIL Three-ship Simulation Results, Key Statistics ... 75

 4-4: HIL Simulation Results, Key Statistics ... 86

 4-5: HIL Three-ship Simulation Results, Key Statistics ... 89

 4-6: Flight Test Statistics .. 113

 A-1: Algorithm to Kestrel Autopilot Variable Matrix, Virtual Cockpit 2.4 125

 A-2: Algorithm to Kestrel Autopilot Packet Variable Matrix, Virtual Cockpit 2.4 125

 A-3: Algorithm to Kestrel Autopilot Command Packet Matrix, Virtual Cockpit 2.4 .. 126

xvii

List of Abbreviations

AFIT Air Force Institute of Technology
AFRL Air Force Research Laboratory
AGL Above Ground Level
ANT Advanced Navigation Technology Center
ATMS Air Traffic Management System
ATR Autonomous Target Recognition
BAO Battlefield Air Operations
CA Collision Avoidance
CD&R Conflict Detection and Resolution
CPA Closest Point of Approach
DSA Detect, Sense and Avoid
EO/IR Electro-optical / Infrared
FAA Federal Aviation Administration
GCS Ground Control Station
GPS Global Positioning System
HIL Hardware-in-the-Loop
HUD Heads-up Display
IED Improvised Explosive Device
ISR Intelligence, Surveillance and Reconnaissance
MAV Micro Aerial Vehicle
MCR MATLAB Compiler Runtime
NAS National Airspace System
PID Proportional-Integral-Derivative
R/C Radio Control
SA Separation Assurance
SAA Sense and Avoid
SIL Software-in-the-Loop
SOCOM Special Operations Command
TCAS Traffic Alert and Collision Avoidance System
UAS Unmanned Aircraft System

1

UAS COLLISION AVOIDANCE ALGORITHM THAT MINIMIZES THE
IMPACT ON ROUTE SURVEILLANCE

I. Introduction

1. Background

Current ground missions in Operation Iraqi Freedom and in the war on terror

involve convoy transportation and the security of those convoys. Dangers to convoys

include Improvised Explosive Devices (IED) that are placed on or near the road being

used by Unites States military and coalition vehicles. One solution proposed to increase

security around these mobile units is an unmanned aircraft system (UAS) to monitor the

route before and during the convoy movement. The UAS could be used to detect

insurgents placing the IEDs or to detect the IEDs themselves and alert convoy security

before soldiers, civilians, or property are harmed.

Many options exist for a route surveillance system concept. A single aircraft with

on-board sensing and processing could be used, but the effectiveness would be limited

due to the required revisit rates. A multi-aircraft system could be used to monitor an

entire stretch of road simultaneously but may require off-board processing and a more

complicated communication and relay system. Both system types will be exposed to an

environment where collision potential exists with non-cooperative air traffic or

cooperative traffic within the UAS. In order to ensure completion of its mission and the

safe return of the aircraft, separation must be maintained between vehicles in the UAS

and between the UAS and non-cooperative traffic whether by procedures, human

interference, or a last line of defense, a collision avoidance system.

2

2. Motivation

The intuitive need for collision avoidance systems in unmanned aircraft is

apparent in the abundance of current algorithms, hardware, and complete-system

developments for UAS of all sizes and complexity. In particular, military applications of

UAS for defense and intelligence missions, and requirements for those missions, are laid

out in the Unmanned System Roadmap 2007-2032 [1] and collision avoidance is

specifically addressed in this roadmap. In fact, Chapter 6, Technologies for Unmanned

Systems, Section 6.1, Technology Challenges, of the Roadmap states “the single most

important near-term technical challenge facing unmanned systems is to develop an

autonomous capability to assess and respond appropriately to near-field objects in their

path of travel.” This technical challenge is addressed by providing “direction for future

investments” for collision avoidance systems.

6.6.8. Dynamic Obstacle/Interference/Collision Avoidance (Including
Humans)
All unmanned systems except the smallest special purpose vehicles must have the
ability to autonomously avoid obstacles. In addition to the simple avoidance of
obstacles (which is not simple if both the “obstacle” and the vehicle are moving
independently), we must consider perception elements impacting trafficability,
tactical maneuver, and mission execution. While most control algorithms are
sufficiently mature, sensor processing is lacking for autonomous operations.
Some combination of radar, optical, and infrared (IR) sensors will likely be
required; and image processing algorithms, especially for the latter two, are in
their infancy. Most of the mission capabilities also require the autonomous
avoidance of threat systems, including ships, boats, craft, active sensor systems,
and, to whatever extent possible, passive detection systems. The community
would benefit greatly from increased developments in this area. [1]

This Roadmap subsection affirms the need for collision avoidance developments

in algorithms, sensors, and implementations. While control algorithms may be

sufficiently mature, the integration of these algorithms with collision detection and

3

tracking algorithms is not mature. Additionally, analysis of commanded maneuvers for

particular collision encounters is in its infancy. Therefore, additional research in these

areas is warranted.

3. Problem Statement

Unmanned aerial systems are being widely used for intelligence, surveillance and

reconnaissance (ISR) missions in both peaceful and wartime missions at home and

abroad. As the number of separate systems grows and the number of unmanned vehicles

in a single system increases, the ability to ensure the safety and integrity of the vehicles

and ensure successful completion of missions is increasingly more difficult. Multiple

vehicles are currently being used or are being tested for route surveillance, border and

perimeter patrol, and support missions for all of the Unites States military services and

other United States government agencies such as the Department of Homeland Security

and Customs and Border Protection. Collision avoidance systems, whether implemented

on-board the air platform or through a cooperative network, are a necessary component of

the overall system.

Collision avoidance systems will come in many varieties and levels of

complexity. The type, reliability, and autonomy will depend on operational requirements

and the system it will protect. Neidhoefer, et al. state “It was concluded that functional

determinism in autonomous systems is crucial…both to maximize the performance and

potential benefits of such systems and to ensure that the operational environment…is not

degraded for any stakeholders with respect to safety, organization, or ease of operation

[2].” Not only will collision avoidance systems need to demonstrate effectiveness at their

4

defined tasks, they will be subject to intense evaluations, both for systems with and

without humans in the loop.

4. Research Objectives/Hypothesis

The objective of this research was to develop a UAS collision avoidance system

that deconflicts potential collisions and minimizes the mission impact as several aircraft

perform a route surveillance mission. Multi-vehicle teams will be used for persistent

surveillance of routes that will be traveled by convoys, borders between designated

geographic areas, and perimeters of military and civilian bases and camps. These systems

will maintain constant coverage of the route and identify possible threats along the route

or within the area. The persistent surveillance constraint may result in operating the UAS

in close proximity to each other throughout their coverage pattern. Additionally,

exogenous inputs such as wind could cause unexpected encounters between UAS in the

coverage pattern. Research in the Air Force Research Laboratory’s Air Vehicles

Directorate (AFRL/RB) has successfully shown efficient path planning of UAS that

provide coverage of a route or perimeter while adding or removing UAS to the pattern

and while changing the boundaries of the route or perimeter [3]. This research uses

encounter geometries that may occur in these surveillance patterns as scenarios for

potential UAS collisions. It is desired that the UAS successfully avoid the collisions and

return to the prescribed search pattern while minimizing the impact on the sensor’s route

coverage. Altitude separation may not be a viable separation assurance method depending

on sensor requirements, optimal operating conditions, and surveillance methods, so this

research does not assume trivial collision avoidance measures (e.g. altitude separation).

5

As a proof of concept, the developed algorithm was tested on a small-scale micro air

vehicle (MAV) testbed present within the Advanced Navigation Technology (ANT)

laboratory. The testbed allows for a scaled version of UAS collision avoidance in a

representative route surveillance mission.

The author asserts that a modified three-dimensional collision cone approach

using aggregated cones and proportional navigation can successfully deconflict

cooperative UAS in a range of encounter geometries. The algorithm will not rely on

scripted maneuvers nor be limited to a particular spatial dimension and will provide

commands to multiple aircraft in a cooperative network. The results will be the first

known flight tests of a global, three-dimensional, geometric collision avoidance system

on an unmanned aircraft system.

5. Research Focus

Significant amounts of research, development, and discussions in the literature

involve the current issues of cooperative operations of UAS and airspace integration of

those systems into airspace systems shared by manned aircraft. The term Sense and

Avoid (SAA) is typically used to refer to the ability of an aircraft, autonomously for UAS

and both autonomously and pilot controlled for manned aircraft, to detect a potential

collision and command a resolution maneuver. This author defines two components to

SAA: the longer time horizon aspect referred to as Separation Assurance (SA) that is

dependent on procedures, mission plans, and possibly control station functions, and the

shorter time horizon aspect Collision Avoidance (CA) that is dependent on aircraft

6

performance and response times as a last line of defense. The relationship between the

three terms is shown in Figure 1-1.

Figure 1-1: Sense and Avoid Components

SA and CA are not always distinguishable depending on the encounter, platform, and

environmental circumstances; thus, there is overlap between them.

The algorithms developed in this thesis are intended to fulfill the CA function of a

SAA system. It is assumed that mission procedures, human operators and the ground

control station, if applicable, conduct SA actions but fail as a result of errors or

exogenous inputs into the system and CA actions are required.

Planar collision encounter scenarios are of primary concern in this research

because of the route surveillance mission operations. Planar, in this sense, describes

multiple aircraft operating at constant above ground level (AGL) altitudes, thereby

introducing collision possibilities while still allowing three-dimensional translational

motion and collision avoidance reactions. Requiring constant AGL operation negates the

trivial separation assurance procedure of altitude separation and is justified by any of the

following reasons:

7

1. Surveillance pattern may require close proximity between platforms,

2. Sensors may be optimized for specific AGL altitudes so altitude separation would

adversely affect the sensor measurements, and/or

3. Change detection requires operation at corresponding altitudes between passes

because altitude separation would severely increase the false alarm rate.

6. Methodology

The steps necessary for successful development and testing of such an algorithm

are now described. A significant amount of published basic research is used to develop

the algorithms described in this thesis. Nonetheless, additional theory development is

completed to extend the published theory for application to this problem. Following

theory development, application to UAS CA is completed by focusing the research on a

particular type of system and operation. With this information, tests can be identified to

exercise the algorithms and performance measures can be enumerated.

Testing must be performed in a sequential manner with increasing uncertainty and

complexity added in each step. First, ideal simulations are used to verify algorithm

theoretical capabilities. For example, collision detection is tested in an ideal simulation

by constructing an encounter guaranteed to result in a collision. Similarly, collision

avoidance is tested using the same encounter and is successful if the collision is evaded.

Assumptions are applied in these simulations such as simplified three degree-of-freedom

dynamics and perfect command tracking, thereby, alleviating any uncertainty.

Next, complexity is added by testing the algorithm in a representative

environment that it will ultimately operate in. Software-in-the-loop (SIL) simulation

8

capability is offered by the manufacturers of the UAS selected for integration. Interfaces

between the CA algorithm and the system environment are developed in order to

complete SIL and follow-on tests. The interface is defined in such a way so that it can be

used on the actual operational system. SIL simulations add necessary uncertainty that

exists in real-world applications and can be used as a gateway so that if they are not

successful, progression to the next step is halted until major problems are resolved.

Further complexity and uncertainty is added with the next test type that is also

offered by the manufacturer of the selected UAS. Hardware-in-the-loop (HIL) tests

require use of actual external hardware and firmware that will either be onboard the

aircraft platforms or used on the ground during actual operation. Most firmware and

integrated software should be identical to that in the SIL tests, but additional

communication and processing uncertainty now exists when operating on several

different machines. When HIL and SIL results compare favorably, the algorithms and

associated interfaces are ready for testing in a fully operating system and are ready for the

next phase of testing.

The culmination of the CA system’s development is flight test. A successful

demonstration in flight test, with real-world uncertainty, complexity, and environmental

effects, will solidify claims of the algorithm’s effectiveness in its particular application.

Flight test procedures and objectives must be carefully planned and executed in order to

demonstrate the CA system’s intended operation and to return results supporting the

system’s use in future UAS missions. Flight test cases must be constructed properly to

represent scenarios that will exist in actual operation. Finally, data reduction following

9

the flight test is necessary to communicate the test’s successes, failures, and potential

follow-on improvements for the CA system.

7. Assumptions/Scope

This research develops and exercises a UAS Collision Avoidance Algorithm That

Minimizes the Impact on Route Surveillance. It should be noted that no optimal control

or optimal trajectory generation is used in this algorithm. That is not to say, however, that

portions of the algorithm would not benefit from the use of such theory in the future. The

CA algorithm is intended to monitor traffic internal and external to a cooperative network

of UAS platforms. It will detect imminent collisions between any one of the platforms

and another aircraft and command an appropriate guidance maneuver. The maneuver,

based on the geometry of the collision and minimum separation definitions, tends to

command small deviations to maintain minimum separation; thus, minimizing the

maneuvering and its effect on the mission although not in an optimal sense. Additionally,

the guidance laws applied here initially command small maneuvers that will grow in

magnitude as the range decreases between the aircraft. Thus, collision encounters that are

mitigated early in the encounter timeline will have been resolved with small commands

minimizing impact on the mission. The algorithm does not provide a recovery course of

action or commands to return the platforms back to their original trajectories. It does,

nonetheless, return control of the UAS, after the collision encounter has been abated,

back to the navigation algorithm embedded in the hardware. The navigation function is

then used to determine the appropriate route back to the surveillance pattern. The

algorithm is applicable to many different systems and operations but is limited in this

10

research to a single available system. This system does not allow onboard processing or

sensing, and therefore, cannot detect external collisions outside of the cooperative

network. Throughout the development of the CA algorithm, the potential for external

threats is considered and the CA algorithm supports inputs from any sensing device

provided the data is sufficient and in the proper format.

8. Preview

Chapter II of this thesis will review applicable theory and applications developed

in seminal and contemporary literature. Chapter III discusses original theory, algorithm,

and software developments by this author in addition to hardware and software provided

by the ANT lab and used in this research. Chapter IV provides analysis and results of all

testing performed throughout the research. Chapter V discusses the results and

communicates the author’s conclusions, conjectures, and recommendations for future

researchers and/or users.

11

II. Literature Review

1. Chapter Overview

A significant amount of research and development has been ongoing for years

involving the higher level topics of SAA and conflict detection and resolution (CD&R)

and the lower level functions of SA and CA that are encompassed by SAA and CD&R.

Collision avoidance, as discussed in this thesis, is defined as the detection of an imminent

collision or violation of some minimum separation distance and a commanded avoidance

maneuver after SA has failed. Before unmanned aircraft became prevalent, most of this

research was directed towards commercial aircraft in the United States National Airspace

System (NAS) and in ground-based robotics. Similar techniques and systems have been

applied to the UAS collision avoidance problem as well as a variety of newly proposed

methods. The UAS sub-systems involved in these processes are commonly referred to as

SAA systems and detect, sense, and avoid systems (DSA). The following sections

describe common methods applied to UAS CA and examples of implementation or the

development of each.

Kuchar and Yang present a broad review and survey of CD&R methods in two

papers [4] [5]. These papers discuss a wide array of methods applied to the CD&R

problem to the date of their publications. Section 2 of this chapter reveals current

developments in recent years to this field and key information for each.

When characterizing, comparing and contrasting collision avoidance approaches,

one must describe certain properties of the proposed methods. Kuchar and Yang group all

algorithms and approaches based on state dimensions, resolution maneuvers, and multiple

12

conflict properties of the algorithms. Dowek and Munoz further define these categories

[6]. State dimension refers to two or three-dimensional conflict modeling for the

detection and avoidance of collisions. Two-dimensional modeling typically concentrates

on a horizontal or vertical plane only. Resolution maneuvers are characterized also by the

number of dimensions they inhabit. For instance, a maneuver only in the vertical plane

would be limited to altitude and airspeed changes and would not allow a turn maneuver.

Multiple conflict properties describe whether a system views CA in the global or pair-

wise sense. Global CA involves all aircraft in the airspace which the algorithm considers

when monitoring the dynamic airspace, detecting collisions, and commanding

maneuvers. This is global in the sense that the UAS considers all threats that it is aware

of simultaneously. This method applies to both cooperative and non-cooperative aircraft.

Pair-wise avoidance involves one UAS and one intruder regardless of the surrounding

environment. Encounters between aircraft are resolved one at a time but can include

considerations for future conflicts or maneuvers. Nonetheless, subsequent avoidance

maneuvers by one UAS avoiding multiple intruders in a pair-wise fashion are not

considered global. Pair-wise is also applicable to cooperative and non-cooperative

aircraft.

2. Methods

2.1. Geometric

Geometric collision detection and avoidance methods involve geometric

properties of aircraft trajectories and utilize positions and velocity vectors of all or

13

some aircraft involved in the encounter. Geometric methods can be used for collision

detection by comparing velocity vectors of vehicles and obstacles, and can aide in

collision resolution/avoidance by providing encounter geometry to the resolution

guidance algorithm.

Chakravarthy and Ghose proposed a geometric collision detection and

avoidance method in a dynamic environment with no constraints on vehicle shape or

size. Their concept, the collision cone approach, originally developed for robotics,

has proven to be a valuable foundation for other geometric approaches and methods

and has been cited many times in the literature [7]. Using state information from the

vehicle and obstacles, the collision cone approach analytically defines a collision

region for which a collision is imminent if the vehicle velocity vector lies in this

region. A thorough outline of the algorithm is given in addition to a number of

examples by the authors in their publication.

A collision detection and avoidance approach referred to as the geometric

optimization approach has been proposed [8]. This geometric collision detection

method is a typical comparison of velocity vectors, but the resolution is optimized in

the sense that it attempts to minimize the deviation from the nominal trajectory. The

author also discusses the geometric optimization approach for multiple intruders but

limits the effort to sequential avoidance of the most critical encounter. This is still

considered pair-wise CD&R as opposed to global. Bilimoria noted “that resolutions

for multiple-aircraft conflicts obtained by sequential pair-wise solutions do not

necessarily minimize deviations from the nominal trajectories.” Therefore, the

14

minimum deviation from the nominal trajectory may not be a combination of pair-

wise encounter maneuvers, and the solution must be examined in the global sense.

Goss, Rajvanshi, and Subbarao consider the conflict detection and resolution

problem using geometric and collision cone approaches for two aircraft in a three

dimensional environment [9]. The pair-wise avoidance solution is found using the

collision cone approach to detect a collision and generates a combination of velocity,

heading, and elevation changes to avoid the collision. Analytical solutions are

rigorously found for special encounter situations, but a numerical solver is used for

more general cases. Numerical solutions are not ideal for real-time applications, and

according to the authors, “the nonlinear equation solver has a tendency to get stuck at

spurious updates in more complex scenarios.” This pair-wise solution method would

only increase in difficulty for simultaneous multiple intruders.

A pair-wise non-cooperative decision making algorithm for three-dimensional

collision avoidance was presented by Carbone, et al. The authors contend their

collision avoidance method is suitable for real-time applications because of analytical

solutions that do not require numerical programming [10]. Similarly to Goss,

Rajvanshi, and Subbarao, Carbone’s three-dimensional geometric method is based on

the collision cone. Numerical simulations are offered to demonstrate the algorithm’s

ability to maintain minimum separation while including sensor field-of-view

limitations. The resolution algorithm, nevertheless, does not utilize all three of its

control variables (i.e. longitudinal, lateral-directional, and speed) at the same time.

However, comparisons of the three are presented.

15

2.2. Force Field

Force field methods are global approaches to CD&R. Vehicles can

individually be represented as charged particles and repulse each other given position

and velocity information of each or the entire airspace can be defined as a potential

field or magnetic field and vehicles are maneuvered based on the global environment.

This method is suited for distributed collision avoidance where state information is

readily available from all vehicles, but can be applied to local avoidance when the

number of vehicles is small.

Despite the distributed and global aspects of force field methods, several

elements of these approaches are difficult to incorporate into practical systems. When

generating a dynamic potential field, saddle points and local minima can disrupt the

flow of vehicles and introduce additional problems such as aircraft stall or further

collision threats. As eluded to previously, aircraft performance and dynamic

characteristics must be taken into account when generating a field or evasive

commands. If complete state information is not known for all vehicles or if a

magnetic/potential field is not properly formed, aggressive control commands may be

generated that are outside of the vehicles’ abilities.

Sigurd and How investigate a “total-field sensing approach of magnetic

nature” focused on systems with a large number of N vehicles [11]. The authors assert

that local control approaches break down as N grows and the complexity and

potential for collision grow exponentially. Also, many previous potential field

approaches required perfect information or perfect sensing for safe maneuvering

16

through the obstacle field. Complexity and imperfect information, or lack of

information, say Sigurd and How, necessitate a distributed control approach. The

authors provided simulation results and a hardware experiment as advocates for their

algorithm. Although their discussions of increasing collision potential as N grows and

the benefits of distributed control are thorough, the authors’ approach has many

drawbacks to aircraft collision avoidance. All vehicles would be required to carry a

magnetic field generating device and a magnetic field sensing system, limiting this

approach to cooperative collision avoidance.

A multiple-vehicle UAS deconfliction algorithm based on potential functions,

referred to by the authors as navigation functions, was developed and presented by

Rahmani, et al. [12]. The approach addresses conflict prediction, resolution,

navigation and control of flying vehicles while obeying mission requirements.

Simulations are described that support their approach. This paper expands traditional

potential methods by using maneuvering obstacles, ensuring vehicles are in constant

motion and embedding mission requirements in the construction of the navigation

function. Aircraft operational limitations are included in the formulation of guidance

and control commands. Stagnation problems, a typical drawback of potential

functions for flying vehicle applications, are dealt with in this paper with the addition

of a swirling effect in the potential function. This, however, detracts from the

compliance with vehicle operational limitations formulated in the original function.

Consequently, vehicle motion constraints and maneuver constraints cannot be

17

guaranteed simultaneously. Saddle points are also a complication in the potential

function and would cause a catastrophic effect in real applications.

2.3. Probabilistic

Probabilistic methods for aircraft CD&R may involve the calculation of the

probability of collision based on current aircraft states and possible perturbations

about that nominal state or the probability of collision based on all possible

maneuvers and their likelihood of occurring. These methods avoid the

conservativeness of worst-case prediction methods while maintaining robustness to

uncertainty [13]. Statistical representations of the airspace environment, for global

applications, and of its inhabitants, for pair-wise applications, must be characterized

prior to algorithm design. Detailed knowledge of the airspace and its inhabitants is

required and is used, typically, in Monte Carlo simulation for characterization.

Prandini, et al., 1999 and 2000, present approaches for probabilistic conflict

detection for mid-range and short-range conflict scenarios [13] [14]. The authors

define mid-range conflicts in the time horizon as tens of minutes and short-range

conflicts as seconds to minutes. The probability of conflict is characterized by Monte-

Carlo simulations and, in some special cases, closed form solutions are presented.

These papers are focused primarily on the Air Traffic Management System (ATMS)

and aircraft following flight plans and their respective waypoints. The CD&R

functions are computationally intensive and require closed-form approximations and

estimating algorithms for real-time applications.

18

Probability based methods have been applied to non-aircraft conflict

detections [15]. Although the application is quite different, derivations of time to

closest approach (TCA) and minimum miss distance (MMD) for spacecraft could be

applied to aircraft as long as linear assumptions are valid. Simulation and

experimental results were used to validate the probability of collision calculations.

Probabilistic methods specifically for UAS collision avoidance are discussed

in three dimensions assuming UAS constant velocity [16]. The collision is

decomposed into a horizontal plane and a vertical plane, and minimum separation

criteria are defined for each plane. Probabilistic trajectory modeling is accomplished

by modeling uncertainty in own-ship and intruder position and velocity obtained from

a data-link system and in intruder maneuvering uncertainty. Threat levels are defined

for probability of collision values determined from Monte-Carlo simulations. Scripted

maneuvers are defined for each threat level in three dimensions although in

simulation only vertical maneuvers are performed. The authors attribute this to the

minimum separation definitions which make vertical maneuvers less aggressive.

2.4. Other Methods

Collision avoidance is a primary topic in swarming/flocking research of birds,

insects, and other animals with applications to multiple aircraft operations in close

proximity. Park, Tahk, and Bang discuss the historical evolution of swarming/

flocking research in computer graphics, gaming, and most importantly, aerospace

applications [17]. The authors reference Reynolds’ research of flocking behaviors and

steering behaviors and his creation of “boids” (bird-oid) in flocking simulations [18]

19

[19]. Flocking can be modeled using three distinct and simultaneous behaviors, one of

which is collision avoidance. Also, sub-behaviors were defined that make up the three

main behaviors. Those sub-behaviors that relate to collision avoidance include

fleeing, evading, and obstacle avoidance. Many of these basic functions are

implemented using geometric techniques of summing or aligning velocity vectors.

Park, Tahk, and Bang implement CA in a pair-wise sense by defining a

“safety-bubble” around the boid (aircraft) and commanding a scaled steering

command opposite of the line of sight direction to the closest boid violating the

bubble. This method is tested in three degree-of-freedom simulations.

A recent development in CA does not involve a detection or control method,

but involves a spatial representation with which to define the avoidance approach.

The Curvature-Velocity-Orientation (CVO) Method transfers aircraft motion from

Cartesian space into CVO space and applies a potential field CA method for obstacle

avoidance [20]. The potential field method transformed into CVO space is designed

to take into account aircraft dynamic constraints making its application to UAS CA

more achievable. Successful simulation results are shown but only for stationary

obstacles. Also, the CVO results, as compared to the Cartesian space counterpart,

contain undesirable oscillations in its final trajectory.

3. Flight Tests and Notable Simulations

Notable simulations of CA system responses to collision encounters include tests

by Farley and Erzberger, and Paielli [21] [22]. Farley and Erzberger used recorded

Federal Aviation Administration (FAA) air traffic data in the Cleveland Air Route Traffic

20

Control Center airspace to test their conflict resolution algorithm in nominal and heavy

traffic conditions. Paielli used archived data of actual loss of separation due to controller

error tracking data to test his method of solving imminent air traffic conflicts. The

archived data consists of 100 operational error occurrences caused by the controller,

which, according to Paielli, tend to be more difficult to detect and resolve than routine

conflicts that get resolved successfully.

Another interesting simulation implementation of a CA system was focused on

vision-based obstacle avoidance for UAS. The respective avoidance algorithm is based in

Minimum Effort Guidance and was compared to proportional navigation guidance in a

sequence of publications [23]. This guidance method was then tested using a six degree-

of-freedom image-in-the-loop simulation set-up to exercise the vision-based detection

algorithms and the subsequent avoidance maneuver [24]. Results of image processing,

estimation, and guidance are analyzed. Image processing post-analysis shows the image

processing algorithm did detect the obstacles but not as expected. The guidance system

performed as expected and maintained required separation from the obstacles, but a

significant limitation of these results is that the obstacles were stationary.

Significant amounts of hardware and software-in-the-loop simulations and

calibrations, including communication system latencies, have been performed to prepare

an obstacle detection, tracking, and CA system for flight test [25]. Ground tests

characterizing system behavior and latencies are being performed for algorithms and

sensors, both electro-optical (EO) and radar, and statistical performance properties of

these have been defined.

21

A successful flight test of a maneuvering aircraft around another stationary,

hovering aircraft was described by Neifhoefer, et al. [2]. The authors’ intent was to

demonstrate that practical implementations of highly autonomous functionally

deterministic systems are possible. “Highly autonomous” in the previous sentence is a

broad statement that could include traditional fly-by-wire autopilots or systems with

high-level autonomy that involve complex decision-making or interaction with humans.

The UAS in this experiment was commanded to fly a straight line path to a point along

which it would collide with another aircraft. The collision avoidance system detected a

collision and generated a safe, modified trajectory around the other aircraft to the goal

point. Additionally, the modified path could be controlled and the resulting direction of

the avoidance maneuvers was thereby changed. Results of the flight test are shown and

conclusions are made about the feasibility of functionally deterministic systems being

used on UAS.

Large scale flight tests have been completed by Northrop Grumman Corp. and

AFRL using the variable-stability Calspan Learjet as a UAS surrogate aircraft [26]. These

flight tests investigated the feasibility and effectiveness of the Traffic Alert and Collision

Avoidance System (TCAS), a human-in-the-loop collision warning system used on

today’s commercial aircraft, in an autonomous collision avoidance role. The benefits of

using TCAS in future UAS sense and avoid systems were shown through analyses of the

flight test results. The tests consisted of a variety of encounter scenarios between the

surrogate UAS and intruder aircraft: 1) level head-on, 2) abeam, 3) ascending head-on,

and 4) descending head-on.

22

4. Summary

Chapter II provided a comprehensive, but not all-inclusive, overview of methods

and techniques that have and are being applied to collision detection and avoidance. The

most common methods were discussed by providing examples of their uses, from

theoretical derivations to modern applications. The topic of UAS CA has been

exhaustively researched, but no solution yet exists that can provide a generic capability

for effective and safe CA for all aerospace applications. It is not this author’s intent to

undertake this daunting task; this thesis is meant to provide a capability for the UAS

mission described in Chapter I and that is applicable to other UAS civil and military

operations.

Geometric methods provide the most straightforward and extensible collision

detection and avoidance techniques. A large amount of research has been completed on

these approaches as they apply to UAS CA. However, no single existing solution

addresses three-dimensional CA in the global sense for cooperative UAS operations.

Cooperative, as defined in this research, is the exchange of information between UAS,

either directly between platforms or through some single control station. Force field

methods are well suited for global collision avoidance, but drawbacks such as including

UAS performance limits and expansion to three-dimensional applications hinders their

use. Probabilistic methods accommodate uncertain air traffic environments that can be

described by statistical properties. This, however, requires modeling the probability of

future trajectories for all entities in the environment, both cooperative and non-

cooperative. Geometric methods address cooperative and non-cooperative traffic in the

23

same manner by comparing nominal trajectories using state information from either a

cooperative network or sensors. This research focuses on the cooperative network of

UAS, but the resulting algorithm is compatible with other sensed traffic. A geometric

method, based on the collision cone approach [7], is used as the foundation for a three-

dimensional global collision avoidance algorithm for UAS collision avoidance.

The collision cone approach has concurrently been expanded to three dimensions

and applied in the global sense by this thesis’ author but only for a single UAS [27].

Considerable amounts of additional research and development is needed for a novel and

robust algorithm that manages both cooperative and non-cooperative traffic and detects

imminent collisions and issues avoidance commands to a group of UAS. That type of

algorithm does not yet exist in a single solution and certainly has not been flight tested

according to an extensive literature review. This research engages both the algorithm and

implementation deficiencies, and flight tests the resultant solutions.

24

III. Methodology

1. Chapter Overview

As discussed in Chapter II, the collision detection and avoidance method being

employed in this research is based on the collision cone approach. According to the

geometry of the encounter and the rates of change of translation and orientation, safe

regions of flight are defined by the algorithm for each UAS in the cooperative network.

In order to complete the algorithm, each UAS must be directed to safety in a manner

consistent with the geometry of the encounter. Consequently, an algorithm providing

guidance commands that are integrated with the detection algorithm is developed and

refined for UAS CA.

A generic architecture, represented in pseudo-code, is shown in Figure 3-1 and

describes in detail the process flow of a CA algorithm integrated with the navigation

system of a UAS. The acronym GCS stands for ground control station which is the

controlling unit that commands all UAS in the cooperative group. This research will not

address all possible CA functions shown in the figure (see Chapter I, Section 7). Non-

cooperative traffic will not be considered so Function 2 under “IF COMM LINK ->

GUID_MODE” is not performed. Similarly, “ELSEIF NO COMM_LINK” is not

considered, because information must be transmitted between aircraft for cooperative

CA. Lastly, RECOVER_MODE is assumed to be the navigation mode of the UAS and is

not considered in this CA system.

25

Figure 3-1: CA Algorithm Pseudo-Code

IF COMM_LINK

 GUID_MODE

1) Monitor Cooperative Airspace (GCS)
- Collision detection algorithm

IF NO_CONFLICT

1) Fly Surveillance Pattern

ELSEIF CONFLICT
 CA_MODE

1) Do Not Maneuver
- Not immediate threat
- Continue monitoring cooperative airspace

2) Maneuver
- Function of range, threat maneuvering, priority

to maneuver, own status (are you the threat)
- Rules of the road

RECOVER_MODE
 IF NO_NEW_CONFLICT

1) Recover
ELSEIF NEW_CONFLICT
 CA_MODE

2) Monitor Non-cooperative Airspace (On-board sensing)
- Requires on-board detection algorithm for non-cooperative traffic

in addition to GCS detection algorithm for out-of-view cooperative
traffic

IF NO_CONFLICT
 Same as above
ELSEIF CONFLICT
 Same as above

ELSEIF NO COMM_LINK

 GUID_MODE
1) GCS Only

i) Prescribed altitude separation
ii) Loiter at current position
iii) Loiter at prescribed location
iv) RTB

2) On-board sensing

 Modes:
GUID_MODE – route surveillance guidance mode, collision detection algorithm

monitors UAS airspace
CA_MODE – collision avoidance system mode, assumes control from guidance mode,

flagged by detection algorithm
RECOVER_MODE – recovery mode from collision avoidance to route surveillance, only

initiated after CA_MODE

Status:
COMM_LINK – health of communication link (binary or threshold)
NO_CONFLICT – detection algorithm status
CONFLICT – detection algorithm status, initiates CA_MODE
NO_NEW_CONFLICT – recovery mode status, initiates recovery maneuver
NEW_CONFLICT – recovery mode status, initiates CA_MODE

26

2. Theory and Algorithms

The collision cone approach uses position, velocity, orientation, and orientation

rate to determine if the nominal, or dead-reckoned, trajectories of two or more vehicles

will result in a violation of some minimum miss distance [7]. This approach applies to

any irregularly shaped object and depends only on current flight path information.

Chakravarthy and Ghose derived the planar algorithm that defined the angular bounds of

the collision cone. Smith, et al., derived the angular rates of change of the cone bounds

and described their use in a three-dimensional CA control scheme based on Proportional

Navigation (PN) guidance [27]. These two algorithms combined form the foundation of a

robust and expandable CA algorithm that is compatible with real-time applications.

A collision cone is the region within which the velocity vector of a vehicle will

violate an obstacle separation zone or collide with that object. The cone is a function of

current states only but is numerically straightforward and not computationally intensive.

A comprehensive description of the algorithm is given in Reference [7]. The

nomenclature is repeated here for convenience. Figure 3-2 shows two-dimensional

collision cones for three generic encounter cases. A single intruder can have as many as

two collision cones if it is a collision threat, and for N intruders, there can be as many as

2N cones. In Figure 3-2, a blue arrow represents an aircraft velocity vector, a black circle

defines the minimum separation area around a collision threat, a blue line represents the

line of sight, red lines are the collision cone bounds, and green arrows point to the interior

of the collision cone.

27

 (a) (b) (c)

Figure 3-2: Two Dimensional Collision Cone Configurations (a) Single Cone (b)
Split Cone (c) Multiple Intruders, Single and Split Cones [27]

Alpha, α, is the UAS velocity vector direction defined as positive counter-

clockwise (CCW) from the x-axis. Beta, β, is a potential threat’s velocity vector direction

also defined positive CCW from the x-axis. Gamma, γ, is the UAS vertical flight path

angle defined positive up. Chi, χ, is the potential threat’s vertical flight path angle. Theta,

θ, is the horizontal plane line-of-sight (LOS) angle from a UAS to a particular threat

defined as positive CCW. Phi, φ, is the vertical plane LOS angle defined along the UAS

velocity vector and positive up from the horizontal plane. Range, r, can be used to

represent the horizontal distance between two aircraft or the slant-range distance. The

horizontal minimum separation radius is given by R and defines the lateral separation.

The vertical minimum separation is referred to as the vertical offset (VO). The collision

cone boundaries are given as a lower and upper angular bound, α1 and α2, respectively.

Similarly, their rates of change are and , where (•) represents time rate of change.

Smith, et al., derived the rates of change of the cone bounds, and these equations are

repeated in Appendix B with some additional simplifications. Each collision cone has its

own set of boundaries and rates, and each plane has its own set of cones. The bounds and

28

their rates of change are defined entirely by the encounter geometry, including range,

speed, heading, and the minimum separation distance. The bounds and bound rates

returned by the extended collision cone algorithm are normalized by the LOS angles and

their rates and are given by , respectively. The absolute bounds are

given by Eq. (1), and their rates by Eq. (2). The vertical plane representation is given by

simply replacing θ with φ and applying the appropriate upper and lower bounds.

 (1)

 (2)

The collision cone approach is valid for irregularly shaped objects. These oddly

shaped objects are decomposed into circular regions that can be used to define a

minimum separation zone around the object. This also allows different definitions of

minimum separation in the lateral and vertical directions. Many of the geometric-based

CA algorithms discussed in Chapter II assume a spherical safety zone around obstacles

and other aircraft. This assumption simplifies the derivation of some detection and

avoidance algorithms but does not allow the flexibility of independent separation

distances in the horizontal and vertical planes. The minimum separation volume in this

research uses definitions from the Federal Aviation Administration (FAA) of aircraft

encounters. The FAA classifies the encounter’s criticality by the horizontal separation

and vertical separation of the aircraft involved. Likewise, a lateral and vertical separation

forming a cylinder in three dimensions is used for this research. When viewed in the

29

horizontal plane, the cylinder appears as a circle and the collision cone algorithm can be

applied directly. When viewed in the vertical plane, the cylinder appears as a rectangle

that must be decomposed into a circle for application of the algorithm. Lines extending

from a particular UAS location tangent to the rectangle’s protruding corners in the

vertical plane can be found, and a circle residing in these lines whose boundary is also

tangent to them can be defined. The radius of this circle changes as the range from the

UAS to the center of the circle changes. By selecting the range to the center of the circle

to equal the range from the UAS to the threat, the radius of the circle can be found.

Reference [7] gives this relationship and it is repeated in Eq. (3).

 (3)

With the definition of a radius for the minimum separation in the vertical plane, the

collision cone approach can now be directly applied. The vertical plane geometry as

viewed by the algorithm is shown in Figure 3-3.

 (a) (b)

Figure 3-3: Collision Cone Approach in the Vertical Plane (a) Single Cone (b)
Multiple Intruders, Single and Split Cone [27]

30

The line and arrow features in Figure 3-3 are the same as described for Figure 3-2,

except the black circle is replaced by a black rectangle for the minimum separation area.

Grey dashed lines project from the UAS velocity vector and are tangent to the rectangles

protruding corners. The resultant separation circle calculated using Eq. (3) resides inside

these lines and is also grey and dashed.

Given collision cone angular bounds and their rates of change defined in two

planes, the horizontal and vertical, as a function of different separation criteria for

minimum lateral separation and vertical offset, a sufficient description of the encounter

geometry exists for CA. It is a simple extension from a single three-dimensional cone for

a single obstacle to multiple cones for several obstacles. The modified collision cone

algorithm is simply executed for each obstacle. However, this gives only a disassociated

view of the threat environment and represents sequential pair-wise collision detection. A

conservative, yet effective, approach to providing global collision detection is to

aggregate overlapping individual collision cones in their respective planes into a single,

all-encompassing cone that describes every potential obstacle threat in that region.

Multiple collision cones are still possible if there is no overlap. The aggregate cone

method guarantees the velocity vector will only exist in a single cone, and any necessary

avoidance maneuvers are with respect to that single cone. Thus, the assignment of

commands is not confounded by prioritization of individual threats or selection schemes

of a set of maneuvers and no conflicting commands are issued. Figure 3-4 gives a visual

representation of aggregating cone bounds.

31

Figure 3-4: Aggregate Cone Bounds

Figure 3-5 gives a complete description of key attributes of a two-ship encounter as

viewed by the aggregate multiple vehicle UAS collision cone algorithm.

Figure 3-5: Full Encounter Description

-50
0

50
100

150
200

100

150

200

250

300

350

80
100

X, m
Y, m

Z,
 m

UAS 1

Aggregate Cone
Boundaries

Resultant Vertical Separation
Circles

Minimum Separation
Cylinder

UAS 2

Line of Sight

Aggregate Cone Bound

Individual Cone Bound

32

Using collision cone information about the angular bounds and their rates of

change, guidance commands can be generated in concert with the geometry of the

collision. Han and Bang, and subsequently Han, proposed a proportional navigation

based CA scheme for UAS CA [28] [29]. They found the relative velocity vector of the

UAS could be guided to a “collision avoidance vector” with proportional navigation and

thereby alleviating the collision. Han also went as far as deriving the optimal proportional

gain assuming constant velocity and investigated convergence of the guidance law as a

function of the navigation constant. In this application to cooperative UAS CA, a similar

approach is used for the CA guidance commands. The UAS velocity vector is chosen

instead of the relative velocity vector because the collision cone approach is used instead

of the geometric configuration approach discussed by Han. Han uses a geometric

comparison of the relative velocity vector and the tangents to a minimum separation zone

around an obstacle to define the guidance parameters. By using the collision cone

approach, a collision detection method is not limited to a single vector comparison but is

able to define an entire region of unsafe operation. The UAS velocity vector can then be

guided outside of this unsafe region instead of just a single obstacle cone. Once the

velocity vector is coincident to the edge of the aggregate collision cone, the UAS is

guaranteed to maintain minimum separation by flying a trajectory that results in tangency

to the minimum separation volume. At this point, guidance commands may cease and the

cone and velocity vector are monitored for future violations. The proportional navigation

guidance law used in this UAS CA algorithm is shown in Eq. (4).

 (4)

33

In Eq. (4), a is the commanded acceleration, N is the navigation constant, VUAS is the

UAS velocity, and is the cone bound rate used for guidance (read on for a description

of its selection). This guidance law is a variation of generalized true proportional

navigation [30] where the commanded acceleration a, or, synonymously, angular rate, is

perpendicular to the line of sight offset by a fixed angle. This offset angle is the

normalized cone bound angle calculated using the collision cone approach that is then

added to the line of sight to form the absolute cone bound. The proportional gain, which

Han proved must be greater than one for convergence, is chosen depending on aircraft

maneuverability and the geometry of typical encounters.

Which cone bound angular rate is used in the guidance law is chosen based on the

magnitude and direction of the bound movement. For instance, a contracting cone could

either have both cone bounds converging towards the center of the cone, or one cone

bound converging to the center faster than the other bound that is diverging. Similarly, an

expanding cone either has both cones diverging or one bound diverging faster than the

other converging bound. The angular rate used in the guidance law depends on whether

the cone is diverging or converging, whether the bounds are moving in the same or

opposite directions, and the magnitude of each bound angular rate. The preceding

discussion applies to both the horizontal plane and the vertical plane. The following

tables, Table 3-1 and Table 3-2, define the logic for the guidance law angular rate choice

and the corresponding angle choice. Blue shading denotes a diverging cone and green

shading denotes a converging cone. Subscript 1 implies the upper cone bound and

subscript 2 implies the lower cone bound.

34

Table 3-1: Guidance Law Angular Rate Matrix, Horizontal Plane

Table 3-2: Guidance Law Angular Rate Matrix, Vertical Plane

The logic is based on intuition and trial and error. For example, if both cone

bound rates are positive, it would require minimal effort to deconflict by maneuvering in

the opposite direction, allowing the cone to move away from the velocity vector in

addition to the vehicle moving its velocity vector out of the cone. This is visually

depicted in Figure 3-6.

Figure 3-6: Guidance Logic Example

Cone Rates

Resultant
Turn Rate

35

Assuming Figure 3-6 is in the horizontal plane, it corresponds to the first column

in Table 3-1. More information (i.e. magnitude of the bound angular rates) is needed to

determine the corresponding row.

When overlapping cones are combined into an aggregate cone, the new cone

bounds are used in the guidance logic when choosing which angular rate to use in the

guidance law. The bound corresponding to the angular rate choice used in the guidance

law is maintained throughout the encounter as the guidance bound selection in order to

prevent oscillating commands resulting from bound switching. Bound switching could

occur if two separate cones overlap in the middle of the encounter or if an individual cone

inside of the aggregate cone envelops another individual cone.

The guidance commands generated independently from the horizontal and vertical

planes are decomposed into components along and perpendicular to the UAS velocity

vector. Once decomposed, they can be combined into a single set of commands in three

dimensions. These commands are turn rate (), translational acceleration (), and rate

of change of the vertical velocity vector (). The formulation of the guidance commands

is shown in Eqs. (5-7).

 (5)

 (6)

 (7)

Subscript c denotes a command, h denotes horizontal plane, and v denotes vertical plane.

Subscripts 1 and 2 represent the upper or lower cone bound, respectively. VUAS is the

36

aircraft velocity. It should be noted that because of the definition of α, the turn rate

command shown here is opposite in sign as typical turn rate definitions where heading is

defined as positive clockwise (CW) from the y-axis (North).

Alternative commands can be derived from these basic commands depending on

the application and autopilot. A set of such commands are shown below in Eqs. (8-10).

 (8)

 (9)

 (10)

Integration operators in the equations above are calculated using Euler integration. The

symbol ψ represents UAS heading and is defined positive CW from the y-axis. Theta, θ,

in this context, represents the UAS pitch angle. This command is generated under the

assumption of small angle of attack and a small delay between changes in pitch and

changes in flight path angle.

Smith, et al., described an own-ship UAS CA algorithm based on the collision

cone approach [27]. This algorithm detected potential collisions with multiple intruders

and commanded avoidance maneuvers to the UAS. It was assumed the intruder states

were known, either from a communication network, or from on-board sensors. This

algorithm is used as the foundation for a cooperative multiple vehicle UAS CA system.

Because of the variety of UAS architectures, the cooperative UAS algorithm must be

compatible with many systems. For instance, a UAS could consist of multiple

decentralized platforms each with a CA system on-board, but with the systems acting in a

37

synergetic manner. Or, a system could consist of multiple platforms controlled by a

centralized ground control station which commands the UAS and carries the burden of all

CA processing. Therefore, the own-ship CA algorithm was modified to incorporate

cooperative platform inputs internal to the UAS and non-cooperative threat inputs

external to the UAS and provided by some sensor suite independently. It does not matter

inside the modified collision cone algorithm whether the inputs are from cooperative or

non-cooperative entities, but on real systems the means by which to acquire the inputs

differs greatly (e.g. from the GCS or from the onboard sensors).

The modified and aggregate collision cone algorithm is extended to cooperative

multi-vehicle UAS CA by executing the modified collision cone algorithm independently

for each UAS. In each iteration, a different UAS is treated as the own-ship and the other

UAS and any other sensed threat is treated as a moving obstacle. Consistent collision

detections between conflicting UAS are inherent because the encounter geometry is a

mirror image of the other. Commands generated by the proportional navigation guidance

can be treated in a coordinated or uncoordinated manner. Coordinated is defined in this

research as a synchronization of commands between multiple cooperative UAS reacting

to the same collision encounter. Cooperative and coordinated CA is potentially extremely

efficient because small maneuvers by two UAS with conflicting flight paths could be

more energy efficient than one of the UAS performing an extreme maneuver. However,

the coordination of commands becomes exponentially more difficult as the number of

UAS increases. The following table, Table 3-3, shows what combinations of cooperative

and coordinated CA are used in this application.

38

Table 3-3: Cooperation/Coordination Matrix

Information
Avoidance Commands

Uncoordinated Coordinated

Non-Cooperative Horizontal, Vertical

Cooperative Horizontal Vertical

Uncoordinated maneuvers are the only option with non-cooperative traffic, and

are required by UAS with onboard sensing and processing of external threats. A

cooperative group of UAS can be guided by uncoordinated or coordinated commands.

The proportional navigation guidance coupled with the collision cone approach addresses

the direction and magnitude of commands; however, conflicting commands are possible

for certain encounter geometries. For level, co-altitude flight encounters, flight path

commands tend to be the same sign. However, logically, one would want the aircraft to

move in opposite directions even if the horizontal commands maintain lateral separation.

Thus, the vertical commands can be coordinated in an encounter to direct one aircraft to

climb and the other to descend while allowing the horizontal avoidance to operate

uncoordinated. Only when the difference in angular heading of approaching aircraft is

approaching zero, nearly parallel converging trajectories, do the horizontal guidance

commands have difficulty deconflicting the aircraft. In these extreme cases, the

coordinated vertical guidance provides the primary separation commands. When three or

four aircraft are in a collision encounter, a pair or pairs of aircraft will tend to maneuver

in the same vertical direction. These pairs will rely on horizontal guidance commands to

achieve separation. Any more than four aircraft will require more sophisticated command

39

coordination than what is discussed here, such as optimization techniques to reduce

conflicting maneuvers.

3. Hardware

The UAS chosen for the CA algorithm integration is the AFIT ANT laboratory’s

Battlefield Air Targeting Camera Autonomous Micro-air vehicle (BATCAM). BATCAM

is a miniature unmanned aircraft manufactured by Applied Research Associates, Inc., and

is used by the United States Special Operations Command (SOCOM) for surveillance and

reconnaissance missions.

Figure 3-7: BATCAM

BATCAM, shown in Figure 3-7, is categorized by the 2007-2032 UAS roadmap

as a “Tactical 1 Special Operations Forces Team Small Unit Company and below”

system that is a small, hand-launched, platform with electro-optical/infrared (EO/IR)

sensors or communication equipment as the primary payload [1]. BATCAM is also

classified by the roadmap as a Level 0 domestic-use UAS which is described as a system

under two pounds within line of sight control that operates in unregulated airspace. The

40

utility of the BATCAM system is outlined in a presentation by then Deputy Assistant

Secretary of the Air Force for Science, Technology, and Engineering James Engle to the

Senate Armed Services Committee, Subcommittee on Emerging Threats and Capabilities

[31]. Mr. Engle says of the BATCAM in its role in the Battlefield Air Operations (BAO)

kit, “BATCAM replaces the current UAV system in the BAO kit with one that is five

times smaller and ten times lighter, yet still provides covert reconnaissance, is simple to

operate, inexpensive enough to be expendable, and can provide real-time battle damage

assessment.” Table 3-4 lists the key characteristics of the BATCAM platform.

Table 3-4: BATCAM Platform/System Characteristics [32]

 BATCAM
Manufacturer ARA
User Service SOCOM
Weight 0.84 lb
Length 24 in
Wingspan 21 in
Payload Capacity 0.09 lb
Engine Type Battery
Ceiling 11,000 ft [33]
Radius 1.6 nm
Endurance 18 min
Number Planned 23 systems
Number
UA/System

2

The EO/IR sensor system on the BATCAM consists of two cameras: one mounted

forward-looking and the other mounted side-looking. The two camera angles provide a

powerful surveillance/reconnaissance capability allowing forward views in straight-level

flight and side views for single-point monitoring and loitering. For a route surveillance

mission, long stretches of road can be viewed by a human operator or autonomous target

41

recognition (ATR) user, and single points of interest can be monitored for the endurance

of the platform.

An important component of the BATCAM system is the autopilot onboard which

is responsible for autonomously operating the aircraft, receiving and responding to

commands from the human controller, and relaying information back to the controller.

The autopilot used in the ANT laboratory’s BATCAM systems is the Kestrel Autopilot

System from Procerus Technologies [34]. The Kestrel autopilot is designed for miniature

and micro aerial vehicles.

Figure 3-8: Kestrel Autopilot [34]

The Kestrel Autopilot (see Figure 3-8) provides autonomous flight, takeoff, and

landing capability via tunable control laws and Global Positioning System (GPS)

navigation. The system is complete with wireless communication equipment for

uploading/downloading of information to/from an integrated GCS which will be

described in detail shortly. The autopilot includes a full sensor suite containing three-axis

42

accelerometers and gyros for acceleration, attitude and rate information, and a pitot-static

system for pressure measurements and calculations. A communication box ground

component is the interface between the GCS (installed on a laptop) and the Kestrel

autopilot. The Kestrel Autopilot also allows manual control via a radio control (R/C)

device. Combined with the live and recordable telemetry capabilities of the autopilot, and

an experienced R/C pilot, this system is well-suited for developmental and operational

flight tests from safety and technical standpoints.

Figure 3-9: Virtual Cockpit

The GCS component of the Kestrel Autopilot system is the Virtual Cockpit

Windows-based software system installed on a compatible laptop. Virtual Cockpit,

shown in Figure 3-9, enables multiple vehicle UAS monitoring and control, and most

43

importantly, an external interface for user-developed algorithms. The GCS displays

spatial information of all UAS in a flight plan and map display window, as well as

attitude information in a heads-up-display (HUD) virtual window. Communication

information is displayed for each UAS, and real-time status alerts are provided to the user

with voice announcements. Virtual Cockpit provides in-flight autopilot tuning

capabilities via graphical variable interfaces, and in-flight mode switching between

navigation, manual, altitude, etc., modes.

Table 3-5: Collision Avoidance Algorithm Function Descriptions

Function Name Description
mult_uas_aa Performs parsing of cooperative and non-cooperative UAS

inputs. Performs calculations and organizational tasks for
collision cone avoidance algorithm inputs. Calls collision
avoidance algorithm. Processes avoidance algorithm outputs and
retains persistent variables for next algorithm call. Completes
coordination of commands, as necessary. Calculates Kestrel
Autopilot commands from avoidance algorithm commands.

cc_pn_aa Performs calculations for collision cone approach algorithm.
Uncouples horizontal and vertical collision cone planes. Calls
collision cone algorithm for each threat object/obstacle for
horizontal and vertical planes. Processes normalized collision
cone approach outputs to absolute representation. Aggregates
collision cones based on existing overlap. Determines cone
violation via velocity vector comparison. If conflict exists,
determines cone angle and rate to use in guidance. Applies
proportional navigation guidance to both planes to generate
avoidance commands. Retains flags for use in next function call.

f_collisioncone4 Collision cone approach implementation function. Calculates
collision cone bound angles and angular rates between own-ship
and intruder.

wrap_mpi2pi Wraps angles from minus pi to pi
wrap_pos Wraps angles to positive values
wrap_neg Wraps angles to negative values

44

4. Implementation

CA algorithm development is completed in the MATLAB environment because

of the author’s familiarity with the application, the ANT laboratory’s organizational

preference for its use, its flexibility for algorithm design and testing, and its built-in

portability to programming languages such as C and C++. The CA algorithm developed

in MATLAB code (m-code) is executed in the MATLAB environment and tested in ideal

simulations containing three degree-of-freedom dynamics and perfect tracking of

commands. The algorithm consists of six MATLAB functions in separate m-files. Table

3-5 gives descriptions of these functions and Appendix H contains full listings of the

MATLAB code.

4.1. MATLAB Algorithm Deployment

Implementation of the collision avoidance algorithm into external applications

requires auto-coding of the algorithm into a C shared library and supporting files with

MATLAB’s Compiler application. The compiler allows many user options; the

configuration chosen for this algorithm generates the necessary file types in Table 3-

6.

Table 3-6: Necessary MATLAB Compiler Generated Files

File Type File Extension
Dynamic link library *.dll
Static library *.lib
Header file *.h
CTF file *.ctf

45

Additional C files are generated, but are not necessary. The following commands at

the MATLAB prompt will auto-code the collision avoidance algorithm and return the

files listed in Table 3-6.

mcc –W lib:CCAA –T link:lib mult_uas_aa cc_pn_aa f_collisioncone4 wrap_mpi2pi

wrap_pos wrap_neg

The names of the files are specified by the lib:CCAA option. This will name all

associated files with different extensions CCAA.xxx, where xxx represents one of the

extensions in Table 3-6.

4.2. C++ Application and GUI Development

Once the necessary compiler-generated files are available, the collision

avoidance algorithm can be deployed to an external application. The Kestrel

Developer’s Kit, an add-on package available from Procerus Technologies, is the

interface to Virtual Cockpit and the Kestrel Autopilot necessary for user-developed

applications to communicate with the aircraft. The CA algorithm is integrated with

the GCS using this Kit and MATLAB Compiler Runtime (MCR), an application that

must be distributed with a MATLAB Compiler-created application. The CA

algorithm is linked to Virtual Cockpit through library functions and interfaces in the

Developer’s Kit. A graphical user interface (GUI) and associated C++ functions were

developed and written to process information from Virtual Cockpit for input to the

CA algorithm and to process commands from the algorithm and send to the

autopilots. Functions contained in the MCR are necessary to create the input and

output structure required by the collision avoidance algorithm shared library. Figure

46

3-10 is the GUI for UAS collision avoidance monitoring and defining user

parameters, in addition to other unrelated developmental testing windows.

Figure 3-10: Collision Avoidance Application GUI

The collision avoidance GUI displays its Virtual Cockpit status information in the

title bar. The lower right quadrant of the GUI is the collision avoidance display and

configuration area (CADC). All other displays are for additional variable monitoring.

The CADC display matrix shows the user which agents (i.e. UAS) are being

processed by the algorithm and are identified by their Agent ID number. Currently,

the GUI is compatible with up to four UAS platforms. This corresponds with current

operational mission configurations that use four UAS. The next row in the matrix is a

47

binary flag informing the user whether the respective UAS has a conflict. If a conflict

exists, the flag is a one, and the guidance commands from the algorithm appear in the

remaining matrix locations. Under the agent matrix are user-defined parameter

controls. Default settings appear when the GUI is initiated, but can be changed at

runtime by the user and sent to the algorithm by pressing the appropriate button. The

user-defined variables are described in Table 3-7.

Table 3-7: User Parameters, CA GUI

Parameter Description Default Value Units
Range Maximum range to begin

executing collision avoidance
algorithm

400 m

Lateral Lateral minimum separation
distance

30 m

Vertical Vertical minimum separation
distance (altitude offset)

10 m

The default values were defined iteratively by running several simulations.

The default maximum range value allows ample time for the aircraft to align

themselves for collision encounters while still challenging the algorithm to provide

sufficient avoidance commands. This is a function of typical speeds for the aircraft,

and would need to be changed for other platforms. The default separation values were

selected to account for uncertainty in aircraft trajectories. They are large enough so

that CA will still be activated even if the aircraft are not precisely flying the desired

path. The separation values are a function of typical aircraft speeds and accuracy in

maintaining desired trajectories and would need to be changed for other aircraft.

48

There exists a tradeoff when integrating this CA algorithm into different UAS

platforms. At large ranges relative to the size and speed of a particular aircraft, more

uncertainty exists when determining if the aircraft are on a collision course because of

noisy measurements and the possibility of maneuvers. This uncertainty can be

reduced by waiting until the aircraft are closer together before commanding CA

maneuvers. The tradeoff exists between reducing the CA range and the maneuver

capability of the aircraft. A sufficient amount of range and synonymously time must

be available for the aircraft to maintain separation. Too little range will increase the

possibility of violating minimum separation. Too much range increases the false

alarm rate.

Novel methods of processing UAS information from multiple platforms and

organizing the data for use in the CA algorithm are developed. First, it is necessary to

understand how information is received and sent to Virtual Cockpit and the

autopilots. Data packets are wirelessly transmitted between Virtual Cockpit and the

Kestrel Autopilot. Many types of packets are defined by Procerus and each type

contains different data. Therefore, for a particular algorithm, the proper packets that

contain data required by the algorithm must be identified and received by the

application. For the CA algorithm, two specific packets are required for proper

operation, and one particular packet is optional. The packets are also specific to a

single platform and contain only its information. Communication between the C++

CA application is configured so packet information is passed directly from Virtual

Cockpit to the algorithm for processing. Consequently, packets received by the

49

application must be sorted for the proper packet type and sorted for their respective

platforms. Platforms are identified in Virtual Cockpit by an Agent ID number. The

processing scheme for packet data identifies any Agent ID number and determines

whether or not a packet has been received from that platform. If not, it is a newly

recognized platform and is added to a persistent list of IDs. A flow diagram of this

portion of the algorithm is shown in Figure 3-11.

Figure 3-11: Agent ID Processing

50

Next, the particular packet type is recorded and appropriate data is accessed in

that packet. Recorded algorithm input data is updated using the new packet data.

Another persistent list is maintained by the processing scheme; it is a list of the

packet types that have been received for a particular platform. This is done so the

application tracks whether each platform has the minimum amount of information to

execute the CA algorithm. If so, the platform is said to be “full-state”.

The CA algorithm accepts state data for any number of UAS. However, due to

communication limitations, only a single packet for a single UAS is collected at each

measurement epoch. Thus, a particular set of UAS state data is added to the input

arrays sent to the algorithm if and only if there is full state data for that UAS. That is,

the two required packets for that UAS have been received and its respective input

array elements have been populated. Regardless of whether the current packet

information is used at that particular epoch, the data is used to populate the

appropriate array element and saved for the next epoch. If full state data does not

exist for any detected UAS or exists for only one UAS, then the CA algorithm is not

executed.

As eluded to previously in this section, packet information is sorted according

to new and existing Agent IDs, and UAS state information is added to the input arrays

as they achieve full state information. Hence, the input and output arrays to and from

the CA algorithm are dynamically sized at runtime. This is facilitated by MCR library

functions that perform all memory allocation tasks automatically and appropriate

array sizing in the MATLAB code before compiling.

51

4.3. Collision Avoidance Algorithm/Autopilot Interface

In Section 4.2, the direct pass-through of the packet information from the

autopilot, through Virtual Cockpit, and finally to the collision avoidance C++

application is discussed. Also, extraction of UAS state information from the packet

data is mentioned. The packets are structured so specific data always resides in a

packet location. Specific state variables can therefore be withdrawn from the packet

in short order. Procerus Technologies provides detailed information on the packet

structure of the Kestrel Autopilot system in its Communications Documentation. A

detailed interface description specific to this CA algorithm is provided in Appendix

A. This description provides packet locations of required UAS states for the CA

algorithm, as well as a thorough description of the variables themselves.

Figure 3-12: Collision Avoidance Command Processing

52

A similar process to extracting information from received Kestrel Autopilot

packets is used to populate transmittable packets with guidance command information

from the CA algorithm, if necessary. Figure 3-12 shows a flow diagram of the

guidance command processing. This diagram is initiated with new packet processing,

described above, that is an extremely non-trivial process.

The CA algorithm is executed and returns binary flags to denote conflicts:

zero for no conflict and one for at least one conflict. Conflict flags are returned for

each UAS. If a conflict exists, then it is determined whether this is a new conflict or

an existing conflict. If new, the UAS is switched to MANUAL mode, and the

guidance commands provided by the CA algorithm are sent to the UAS. The mode

switch is controlled by a callback function that populates the proper Kestrel autopilot

packet with the mode identifier and instructs Virtual Cockpit to transmit the packet to

the UAS autopilot. The command transmission is also facilitated by callback

functions that populate the proper transmission packet with the command in the

appropriate packet location. As with the mode switch, Virtual Cockpit transmits this

packet directly to the UAS autopilot. If the current conflict is an existing conflict,

then the UAS is already in MANUAL mode, and only commands are transmitted. If

no conflict exists, but one did exist for that UAS at the last measurement epoch, then

the UAS is switched back to NAV mode. If no conflict existed in the last epoch or

exists in the current epoch, then the collision detection algorithm continues to collect

new packets and monitors the airspace without issuing commands.

53

IV. Analysis and Results

1. Chapter Overview

Chapter IV discusses the tests performed on the CA algorithm and the pertinent

results obtained from each type of test. Simulation results are discussed in sequential

order from the least complexity and uncertainty to the greatest. Simulations include ideal

simulations performed in MATLAB, SIL simulations performed in Virtual Cockpit and

Aviones, an aerial vehicle simulator, and finally, HIL simulations performed with Virtual

Cockpit, Aviones, and the Kestrel Autopilot. Testing is concluded with flight tests

performed with BATCAMs, Virtual Cockpit, and all other required hardware.

Each test is conducted with the same scenario sets. The sets are test cases that

describe particular encounter geometries. A full spectrum of cases is used to evaluate the

robustness of the algorithm. In flight test, the UAS was placed in collision encounters that

included altitude separation for safety purposes. The minimum separation volume was

defined large enough in flight test to activate collision avoidance even though a near-mid-

air close-encounter relative to the size of the aircraft did not occur. Scenarios consist of a

span of engagement angles (i.e. the angles at which the nominal trajectories of two

aircraft meet). Opposing trajectories, 180° engagement angle, are called Head-on

encounters. Trajectories with less than 180° and greater than 90° engagement angles are

called Approaching encounters. A 90° engagement angle is an Abeam encounter. And

finally, an engagement angle of less than 90° is a Converging encounter. Figure 4-1

depicts these encounters visually.

54

Figure 4-1: Test Case Geometries

Virtual Cockpit’s standard telemetry recording feature was utilized for all testing.

The recorded telemetry in flight test is data transmitted from the autopilot down to the

GCS. This data gives a clear indication of commands and responses as reported by the

autopilot, but is bounded by the rate of transmission. No communications between the

CA algorithm and Virtual Cockpit are recorded because this data would be uncorrelated

in time with actual packets received by the autopilot.

55

2. Simulation Results

2.1. Ideal

Ideal simulations were performed for a two-ship encounter at each of the

engagement geometries discussed above. Three degree-of-freedom dynamics with

perfect tracking of commands is assumed. The CA commands essentially control the

magnitude and direction of the velocity vector of the aircraft. Reference [28] proves

that the guidance law converges for a proportional gain greater than one. For

simplicity, the gain was set to the next positive integer value satisfying the

convergence property. Hence, the guidance law proportional gain was set to two for

all subsequent tests.

Figure 4-2: Ideal Head-on Simulation Trajectories

-200 -100 0 100 200
0

50

100

150

200

250

300

350

400

450

500

X, m

Y
, m

UAS1
UAS2
RUAS1

RUAS1

CPA

56

The results for the head-on encounter are shown in Figure 4-2. The closest

point of approach is denoted as CPA and is shown in the figure as stars on each of the

trajectories. Dashed circles represent the horizontal minimum separation at CPA.

CPA representations are the same for all subsequent top-view figures for all

encounters. The two UAS are initialized on coincident trajectories and flying in

opposite directions at a nominal speed of 14 m/sec. This nominal trajectory is shown

in the figure as a dashed black line. The UAS begin their maneuvers after the

minimum CA range, 400 m, is reached. 400 m is the default value discussed in

Chapter III. Avoidance commands last approximately 2.5 sec, 4 to 6.5 sec in the

simulation, and CPA occurs at 19.5 sec into the simulation. The maneuvers follow the

commands shown in Figure 4-3 generated by the proportional navigation guidance.

Figure 4-3: Ideal Head-on Simulation Avoidance Algorithm Commands

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0
dV/dt, m/s

UAS1
UAS2

0 1 2 3 4 5 6 7 8 9 10
0

2

4
dα /dt, deg/s

0 1 2 3 4 5 6 7 8 9 10
-1

0

1
dγ/dt, deg/s

t, s

57

Attention should be paid to the intuitiveness of the commands generated by

the CA guidance. The turn rate commands, as expected, are symmetric and have the

same sign because each aircraft’s approach to the collision point is a mirror image of

the other. The coordinated flight path rate commands are opposite in sign, but not

symmetric. This is due to the cone bounds used in the guidance for a particular UAS

are rotating at different rates as the aircraft climb and dive in relation to each other.

The translational acceleration commands are the remaining components of the

proportional navigation acceleration command ensuring it is perpendicular to the

appropriate cone bound. It is clear that the UAS are within CA range at

approximately four seconds into the simulation.

The ideal algorithm commands must be transformed for compatibility with the

Kestrel autopilot. The transformed commands are also calculated in the ideal

simulations. These commands for the head-on case are shown in Figure 4-4. The

Kestrel autopilot commands are speed (V), integrated from the translational

acceleration command, turn rate (dψ/dt), which is the negative of the rate of change of

alpha, and pitch angle (θ), which is assumed to equal flight path angle, and is

integrated from flight path rate.

The aircraft slant range is plotted with the minimum CA range and the

minimum separation distance in Figure 4-5. The avoidance maneuver commands start

at approximately four seconds into the simulation. This corresponds to the maximum

range allowed for CA (400 m). Also, CPA corresponds to near-tangency of the range

curve to the minimum limit at 19.5 sec.

58

Figure 4-4: Ideal Head-on Simulation Kestrel Autopilot Commands

Figure 4-5: Ideal Head-on Simulation Range

0 1 2 3 4 5 6 7 8 9 10
12.5

13
V m/s

UAS1
UAS2

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0
dψ/dt, deg/s

0 1 2 3 4 5 6 7 8 9 10
-2

0

2
θ, deg

t, s

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

500

t, s

Ra
ng

e,
m

Range
CA Max
Min Lat Sep

59

The altitude of each aircraft is shown in Figure 4-6 along with the vertical

separation, VO (Vertical Offset), dashed lines. It is clear in Figure 4-2 that the aircraft

maintain horizontal separation but are also vertically separated now by almost eight

meters. This is because both horizontal and vertical channels continue commanding

until one achieves its perceived minimum separation. The separation is perceived

because the aircraft may not follow their nominal trajectory after the avoidance

maneuvers due to navigation commands or other obstacles to avoid. Figures for the

other two-ship encounters, Approaching, Abeam, and Converging, are in Appendix

C.

Figure 4-6: Ideal Head-on Simulation Altitude

Three-ship encounters were also completed with ideal simulations. One

stressing case for collision avoidance is three UAS approaching at equal engagement

angles, 120 deg, to the same point in space. Each UAS must react in a manner to

0 5 10 15 20 25 30 35 40 45 50
70

75

80

85

90

95

100

105

110

115

120

t, s

Alt
itu

de
, m

UAS1
UAS2
VO

60

avoid both of the other UAS approaching the point. Without coordination of

commands in the horizontal plane, the geometry of the encounter and the guidance

equations command coherent maneuvers reflecting the symmetry of the encounter.

Figure 4-7 shows the trajectories of this three-ship encounter.

Figure 4-7: Ideal Three-Ship Simulation Trajectories

It is clear from the trajectories and the minimum separation areas shown with

dashed circles that the UAS maintain their lateral separation because of symmetric

maneuvers which were not coordinated by any hard-coded logic, but are inherent in

the guidance law. CPA, for all UAS combinations, occurs at 31.1 sec into the

simulation. Commands last approximately three seconds from 13 to 16 sec into the

simulation. Figures 4-8 and 4-9 show the algorithm and Kestrel commands,

respectively.

-400 -300 -200 -100 0 100 200 300
-300

-250

-200

-150

-100

-50

0

50

100

150

200

X, m

Y
, m

UAS1
UAS2
UAS3
RUAS1

RUAS2

RUAS3
CPA

61

Figure 4-8: Ideal Three-Ship Simulation Avoidance Algorithm Commands

Figure 4-9: Ideal Three-Ship Simulation Kestrel Commands

The UAS, spaced 120 deg apart, are all equidistant from the collision point at

initialization. They maintain this angular and range spacing throughout the encounter.

5 10 15 20 25
-0.4

-0.2

0
dV/dt, m/s

UAS1
UAS2
UAS3

5 10 15 20 25
0

2

4
dα /dt, deg/s

5 10 15 20 25
-1

0

1
dγ/dt, deg/s

t, s

5 10 15 20 25
12.5

13
V m/s

UAS1
UAS2
UAS3

5 10 15 20 25
-4

-2

0
dψ/dt, deg/s

5 10 15 20 25
-2

0

2
θ, deg

t, s

62

Distinct ranges (see Figure 4-10) between UAS are shown as ‘R 1-2’, range between

UAS 1 and UAS 2, ‘R 1-3’, range between UAS 1 and UAS 3, and ‘R 2-3’, range

between UAS 2 and UAS 3. All UAS maintain lateral separation with each other and

each encounter is temporally symmetric.

Figure 4-10: Ideal Three-Ship Simulation Range

Figure 4-11: Ideal Three-Ship Simulation Altitude

10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

500

t, s

R
an

ge
, m

R 1-2
R 1-3
R 2-3
CA Max
Min Lat Sep

0 10 20 30 40 50 60 70
70

80

90

100

110

120

130

t, s

A
lti

tu
de

, m

UAS1
UAS2
UAS3
VO

63

Altitude (see Figure 4-11) displays the same pattern as the two-ship

encounters except for one important feature. Now that there are three UAS, two will

adjust their flight path in the same vertical direction. The burden of maintaining

separation for these two aircraft is now solely placed on the horizontal maneuvers

which were successful.

2.2. Software-in-the-Loop

SIL simulations were configured and executed on a single laptop in Virtual

Cockpit’s loop-back mode. Aviones was configured so that it used its default aircraft

dynamics model and was started first. Once Aviones is running, Virtual Cockpit can

be opened and Agents can be added with distinct Agent IDs and set to operate in SIL

mode. Once added, these UAS and their respective Agent IDs appear in Aviones. The

Aviones graphics screen appears as in Figure 4-12.

Figure 4-12: Aviones with Agents

64

Virtual Cockpit’s GUI is designed for interactive mission set-up, both before

UAS launch and after. Waypoints are added to a particular scenario so that the

encounter will be at the appropriate engagement angle for each test case. This does

not, unfortunately, guarantee that the UAS will always encounter each other in the

desired geometry and location. Significant amounts of re-routing were necessary after

waypoint following in navigation mode was initiated to align the aircraft properly.

Aircraft dynamics and autopilot responses were the causes of configuring the

encounters manually.

Table 4-1: Manual Mode Collision Avoidance Autopilot Settings

Name Setting
Level 1 Loops

Roll Checked
Roll Rate Checked
Pitch Checked
Pitch Rate Checked
Yaw Rate Unchecked
Throttle “Airspeed”

Level 2 Loops
Pitch Dynamic Input “Fixed”

Waypoint following is achieved in navigation (NAV) mode for all UAS.

Collision avoidance operates in manual (MAN) mode when commanding maneuvers

and returns control of the UAS back to NAV mode once the collision threat has been

abated. Modes were configured in Virtual Cockpit for each control loop in the

autopilot. For instance, in MAN mode, a user can select the pitch loop to control

either airspeed or altitude. These settings must be configured appropriately for all

UAS autopilots to obey CA commands properly. The MAN mode configuration for

65

CA in SIL will also apply to HIL and flight test operations. Proper CA MAN settings

are shown in Table 4-1.

To access these settings in Virtual Cockpit, follow the path below starting at

the main window menu ‘Settings->Autopilot Config’. The ‘Global Settings’ window

will appear and will reflect the currently selected Agent autopilot. The following

steps must be completed for each autopilot.

1) Expand Mode Configuration

2) Expand Manual Mode

3) Expand both PID Loops lists (Level 1 and Level 2 Loops)

4) Set variables according to Table 4-1

5) Press Upload Config

6) Press Update Flash

7) Repeat Steps 1-6 for each UAS

The MAN mode autopilot settings for CA ensure that the autopilot control

loops do not generate conflicting commands. The Level 2 loop setting ensures the

aircraft will follow the CA Kestrel pitch command. Level 1 loop settings ensure that

the throttle controls airspeed in accordance with the CA Kestrel airspeed command. A

combination of the other Level 1 loops controls turn rate according to the CA Kestrel

turn rate command.

Once Aviones and Virtual Cockpit are initialized and properly configured, the

aircraft are launched. It takes combinations of active waypoint switching and timing

to get them out of phase by 180 deg. Once they are in opposing route locations, the

66

CA GUI is executed and the CA algorithm immediately begins communicating with

virtual cockpit, receiving packets, and monitoring the UAS. The GUI is monitored as

the UAS cross the 400 m range limit, as the CA algorithm detects the collision, and as

it switches the UAS to MAN mode from NAV mode. Immediately after the switch,

commands populate the Agent matrix in the CA GUI. Mode switches are visually

distinguishable in Virtual Cockpit because the current mode button is highlighted in

green and all others are grey.

Figure 4-13: SIL Head-on Simulation Trajectories

SIL test cases are completed in the same manner as the ideal simulations.

Actually flying out the encounters, mentioned earlier, requires user interaction to

properly align the aircraft for the encounter. For the Head-on case, both UAS are

-400 -300 -200 -100 0 100 200 300 400

-300

-200

-100

0

100

200

300

X, m

Y
, m

UAS1
UAS2
RUAS1

RUAS2

CPA

67

commanded to fly back and forth between the same waypoints and along the same

path, but 180 deg out of phase. This pattern will result in a collision encounter at the

center point along the route. The waypoints are spaced enough to allow the aircraft to

align themselves along the straight route after their turn around the waypoint. The

maximum CA range and separation volumes are identical to those in the ideal

simulations. Figure 4-13 shows the resultant trajectories for the SIL Head-on test

case. The UAS successfully maintained lateral separation and obeyed the CA

commands.

Figure 4-14: SIL Head-on Simulation Airspeed Response

Figures 4-14 through 4-16 show the CA commands for each UAS along with

the autopilot mode. The mode crossing from NAV to MAN illustrates the collision

detection and initiation of avoidance commands being sent to the autopilot.

220 225 230 235 240 245 250
12

14

16

A
irs

pe
ed

, m
/s

UAS1

220 225 230 235 240 245 250
Man

Nav

M
od

e

Actual
Des
Mode

220 225 230 235 240 245 250
11

13

15

t, s

A
irs

pe
ed

, m
/s

UAS2

220 225 230 235 240 245 250
Man

Nav

M
od

e

Actual
Des
Mode

68

Commands are initiated when the mode is switched at 232.17 sec into the simulation,

and CPA occurs at 242.05 sec. Using collision timelines like this (10 sec elapsed from

detection to CPA), CA algorithms can be tailored to particular aircraft and particular

encounter situations in future research.

Figure 4-15: SIL Head-on Simulation Turn Rate Response1

The airspeed commands and response demonstrate acceptable command

change tracking, but there exists a steady-state error throughout the simulation. This

is not a result of the CA algorithm because it also exists in NAV mode. The error is

caused by control loop settings in each autopilot’s proportional-integral-derivative

(PID) controller, and could be reduced by additional tuning of each PID controller for

1 ‘Des’ signal not recorded and is all zeroes

220 225 230 235 240 245 250
-25
-20
-15
-10
-5
0
5

10
15

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

220 225 230 235 240 245 250
Man

Nav

M
od

e

Actual
Des
Mode

220 225 230 235 240 245 250
-10

-5

0

5

10

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

220 225 230 235 240 245 250
Man

Nav

M
od

e

Actual
Des
Mode

69

this particular aircraft model. In flight test, PID settings must be tuned for each

aircraft separately.

Figure 4-16: SIL Head-on Simulation Pitch Response

Unfortunately, the turn rate command is unable to be recorded through Virtual

Cockpit. This is a limitation of the software and firmware on the autopilot, and is

acknowledged by Procerus, the developer of Virtual Cockpit and the Kestrel

autopilot. Thus, command tracking comparisons for turn rate cannot be made, but it is

apparent that commands sufficient to provide lateral separation are being generated

and followed by the UAS.

UAS 2 tracks the pitch command very well, with little delay and effectively

zero steady-state error. UAS 1, however, is slow to respond to the command and

appears to be rate limited as it slowly converges to the command. It is more likely

220 225 230 235 240 245 250
-10

0

10

20
P

itc
h,

 d
eg

UAS1

220 225 230 235 240 245 250
Man

Nav

M
od

e

Actual
Des
Mode

220 225 230 235 240 245 250
-10

0

10

t, s

P
itc

h,
 d

eg

UAS2

220 225 230 235 240 245 250
Man

Nav

M
od

e

Actual
Des
Mode

70

that this is actually another steady-state error. The effect of pitch response can clearly

be seen in the altitude plot and altitude separation is minimal at the end of the

collision encounter.

Figure 4-17: SIL Head-on Simulation Range

Range is shown in Figure 4-17. It is interesting that a collision is not detected

and the mode is not changed until approximately four seconds after the 400 m range

is crossed. The aircraft are still finishing their convergence onto the route line and are

turning into the collision path after the 400 m mark was reached. Once their paths

violated the minimum separation, the mode switch and CA were initiated.

The UAS do not achieve altitude separation because of the slow response of

the UAS 1 pitch (see Figure 4-18). Nevertheless, they do achieve horizontal

separation, and the altitude, for this one test of one case, is irrelevant. The reader

should notice that the aircraft dynamics and communication effects, discussed below,

220 225 230 235 240 245 250

30

200

400

600

t, s

R
, m

220 225 230 235 240 245 250
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

71

caused UAS 1 to be above UAS 2 at CPA (242.05 sec) even though UAS 1 was

commanded to pitch down and UAS 2 was commanded to pitch up. These

uncertainties are inevitable, and must be taken into account by the robustness of the

algorithm (i.e. multiple dimensions for separation and sufficiently large separation

volume definitions).

Figure 4-18: SIL Head-on Simulation Altitude

An issue attributed to communication between Virtual Cockpit and the

autopilot has potential negative impacts on CA and mission execution for this specific

implementation. After CA, the Mode is switched back to NAV mode from MAN

mode. There exists a delay in simulation of this mode switch and could indicate a

delay in the receipt of avoidance commands. This is probably due to a build-up of

avoidance commands in a communication “buffer” that processes and sends

commands to the autopilots at a slower rate than they are being generated. Potential

220 225 230 235 240 245 250

280

290

300

310

320

t, s

A
lt,

 m

220 225 230 235 240 245 250
Man

Nav

M
od

e

220 225 230 235 240 245 250
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2

72

repercussions are increased collision likelihood because of delayed responses and

poor mission performance because of large deviations from the nominal trajectory.

This is a system-dependent issue that is not an indication of the CA algorithm’s

performance. Fortunately, the Mode switch from MAN to NAV at the beginning of

the encounter happens immediately, and commands are received by the autopilots that

successfully deconflict the aircraft.

Table 4-2: SIL Simulation Results, Key Statistics

Parameter

Value

Head-on Approach Abeam Converge

Time of Minimum Lateral Separation 242.05 s 462.44 s 121.15 s 153.47 s

Minimum Lateral Separation 37.5 m 49.26 s 45.18 m 35.41 m

Time of Minimum Slant Range 242.05 s 462.44 s 121.15 s 152.67 s

Minimum Slant Range 35.83 m 49.69 m 45.73 m 37.05 m

UAS1 Alt at Tmin,LS 307 m 304 m 297.33 m 306 m

UAS2 Alt at Tmin,LS 304.5 m 297.17 m 304.17 m 293.83 m

UAS1 Alt at Tmin,SR 307 m 304 m 297.33 m 305.33 m

UAS2 Alt at Tmin,SR 304.5 m 297.17 m 304.17 m 295 m

Figures for the other two-ship encounters, Approaching, Abeam, and

Converging, are in Appendix D. Key statistics of each two-ship encounter are shown

in Table 4-2. Lateral separation was achieved in each test case. Although altitude

separation was not necessary due to the lateral separation, the converging case did

73

achieve full vertical separation. For the other cases, pitch changes were commanded

by the CA system but the dynamic lag between pitch changes and altitude changes

was too slow. Airspeed commands frequently exhibited oscillating patterns, but it is

assessed that these are caused by autopilot attempts to overwrite the CA command. If

this was caused by the avoidance algorithm, either the turn rate or pitch command and

response would exhibit the same type of pattern, because each of the three

independent commands are components of a single change in the velocity vector

command. The autopilot may overwrite commands depending on control loop

settings beyond what a user can adjust (see Table 4-1).

A three-ship encounter was tested in SIL for an encounter identical to the

ideal three-ship simulation. All three UAS have even angular spacing and are

intended to collide near the origin of the local reference frame. Uncertainties, such as

aircraft dynamics, autopilot command tracking, and communication delays, will

inevitably cause differences in the responses, but it is important to demonstrate

functional determinism (the ability to repeat results within bounds given uncertainty

in the system). By quantitatively repeating ideal response patterns in the SIL

simulations within some margin of error, one can transition to higher levels of

complexity with confidence.

Figure 4-19 shows the results of the three-ship SIL simulation. Results are

very similar to ideal simulations, except for UAS 3 turning in the opposite direction.

This is caused by non-ideal geometry and dynamics-effects at the beginning of the

encounter. The discrepant turn direction does not negatively affect the outcome of the

74

encounter, and all aircraft avoid each other in a similar manner to the ideal

simulations.

Figure 4-19: SIL Three-Ship Simulation Trajectories

Figure 4-20: SIL Three-Ship Simulation Trajectories, Zoomed to Origin

-500 -400 -300 -200 -100 0 100 200 300 400 500

-600

-500

-400

-300

-200

-100

0

100

200

X, m

Y
, m

UAS1
UAS2
UAS3
RUAS1-2

RUAS1-3

RUAS2-1

RUAS2-3

RUAS3-1
RUAS3-2

CPA

-100 -75 -50 -25 0 25 50

-60

-40

-20

0

20

40

60

X, m

Y
, m

UAS1
UAS2
UAS3
RUAS1-2

RUAS1-3

RUAS2-1

RUAS2-3

RUAS3-1
RUAS3-2

CPA

75

Figure 4-20 is a close-up view of the locations of the CPA. The lateral

minimum separation areas are distinguishable by two factors. The line color of each

circle coincides with the color of each UAS’s trajectory. The line type represents each

distinct CPA for each UAS combination. For instance, CPA between UAS 1 to 2 is

identical to CPA between UAS 2 to 1, and only one is shown. Key parameters of the

encounter are shown in Table 4-3.

Table 4-3: SIL Three-ship Simulation Results, Key Statistics

Parameter

Value

1-2 (2-1) 1-3 (3-1) 2-3 (3-2)2

Time of Minimum Lateral Separation 176.18 s 176.16 s 187.46 s

Minimum Lateral Separation 44.37 m 32.84 m 20.59 m

Time of Minimum Slant Range 176.18 s 176.16 s 187.46 s

Minimum Slant Range 44.54 m 34.09 m 22.03 m

UAS1 Alt at Tmin,LS 308.17 m 307.83 m

UAS2 Alt at Tmin,LS 304 m 304.83 m

UAS3 Alt at Tmin,LS 299.33 m 298.33 m

UAS1 Alt at Tmin,SR 308.17 m 307.83 m

UAS2 Alt at Tmin,SR 304 m 304.83 m

UAS3 Alt at Tmin,SR 299.33 m 298.33 m

2 Vertical separation was likely achieved, but not shown in data because of irregular measurements. Refer
to discussion following chart for further information.

76

Unlike the ideal simulations where separation was maintained for every

encounter, UAS 2 and 3 violate their lateral minimum separation criteria. This is due

to communication delays causing avoidance commands to be executed seconds after

they are generated by the avoidance algorithm. Although they do not maintain the 30

m separation, the UAS are still separated laterally by over 20 m, and are reported to

have 6.5 m of altitude separation. Thus, uncertainties have caused suspected loss of

separation even in SIL simulations. Furthermore, measurement uncertainty can skew

the results because measurements are taken at discrete time intervals and must be

sufficiently small to recreate the close-encounter spatially and temporally. Thirty

meters was used as the minimum lateral separation for subsequent tests, but further

studies in the future should concentrate on defining separation volumes with

statistical encounter descriptions from Monte Carlo simulations.

The guidance commands are shown in Figures 4-21 through 4-23. Airspeed

commands exhibit the same steady-state error as in the two-ship simulations. Turn

rate commands are acceptable in pattern and magnitude, but because of the deficiency

in Virtual Cockpit data recording, a definitive comparison of command tracking

cannot be made. The pitch commands have poor tracking which causes difficulty in

maintaining altitude separation at the CPA.

77

Figure 4-21: SIL Three-Ship Simulation Airspeed Avoidance Command

Figure 4-22: SIL Three-Ship Simulation Turn Rate Avoidance Command

150 155 160 165 170 175 180 185 190 195 200
12

13

14

15

16

Ai
rsp

ee
d,

m/
s

UAS1

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

150 155 160 165 170 175 180 185 190 195 200
11

12

13

14

15

Ai
rsp

ee
d,

m/
s

UAS2

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

150 155 160 165 170 175 180 185 190 195 200
11

12

13

14

15

t, s

Ai
rsp

ee
d,

m/
s

UAS3

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

Actual
Des
Mode

150 155 160 165 170 175 180 185 190 195 200
-2

-1

0

1

2

Tu
rn

Ra
te,

 de
g/s

UAS1

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

150 155 160 165 170 175 180 185 190 195 200
-4

-2

0

2

Tu
rn

Ra
te,

 de
g/s

UAS2

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
deActual

Des
Mode

150 155 160 165 170 175 180 185 190 195 200
-2

0

2

4

t, s

Tu
rn

Ra
te,

 de
g/s

UAS3

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

78

Figure 4-23: SIL Three-Ship Simulation Pitch Avoidance Command

Recorded range data, Figure 4-24, shows evidence of data transmission

delays, another communication issue. Discrete measurements are recorded at large

time steps during the period of CA. As a result, CPA estimates may not be accurate

due to sporadic range measurements. Altitude measurements, Figure 4-25, show

evidence of underestimation of the actual altitude separation due to irregular

measurement intervals. By interpolating between altitude measurements at the time of

minimum separation (equivalent for minimum lateral and slant range separation),

187.46 sec into the simulation, it is shown that the UAS were separated by as much as

six meters more than the recorded value. This equates to an actual separation of

nearly 12.5 m which meets the vertical separation criteria.

150 155 160 165 170 175 180 185 190 195 200

-2

0

2

4

Pi
tch

, d
eg

UAS1

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

150 155 160 165 170 175 180 185 190 195 200
-4

-2

0

2

4

Pi
tch

, d
eg

UAS2

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

Actual
Des
Mode

150 155 160 165 170 175 180 185 190 195 200
-2

-1

0

1

2

t, s

Pi
tch

, d
eg

UAS3

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

Mo
de

79

Figure 4-24: SIL Three-Ship Simulation Range

Figure 4-25: SIL Three-Ship Simulation Altitude

150 155 160 165 170 175 180 185 190 195 200
0

100

200

300

400

500

600

700

t, s

R
, m

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

M
od

e

R1-2

R1-3
R2-3

CA Limit
Lat Min Sep
Mode(1)
Mode(2)
Mode(3)

150 155 160 165 170 175 180 185 190 195 200

280

290

300

310

320

t, s

A
lt,

 m

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

M
od

e

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

150 155 160 165 170 175 180 185 190 195 200
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2
UAS 3
Mode 3

80

2.3. Hardware-in-the-Loop

Hardware-in-the-loop (HIL) tests required significantly more test preparation

than SIL tests. The autopilots were configured as though they were on an actual

aircraft. They are battery powered with an antenna attached for wireless

communication with the communication box (COMM BOX). The difference between

actual operation and HIL is that the autopilots communicate with Aviones for

simulated aircraft dynamics by configuring Aviones to communicate through USB

communication ports and connecting the autopilots to these ports with adaptors. The

COMM BOX is attached to the computer running Virtual Cockpit which is

configured for autopilot operation in HIL mode and communicates with the COMM

BOX.

Figure 4-26: Single UAS HIL Set-up

81

Figure 4-26 shows the HIL set-up for a single vehicle UAS. For a multiple

vehicle UAS, which is the case for the CA testing, each autopilot must have its own

computer, battery, antenna, and Aviones instantiation. The COMM BOX will

communicate with each autopilot and transfer communications to and from Virtual

Cockpit.

Each autopilot is configured as in Table 4-1 and test cases are identical to

those in SIL testing. Added complexity and uncertainty in HIL includes firmware and

autopilot processing, battery power, and wireless communication. Communication

between the CA application and the autopilot is now subject to wireless

communication delays and dropouts in addition to independent firmware and

autopilot processing instead of software-only processing on a single computer.

Figure 4-27: HIL Head-on Simulation Trajectories

-200 -100 0 100
-500

-400

-300

-200

-100

0

100

200

300

400

X, m

Y
, m

UAS1
UAS2
RUAS1

RUAS2

CPA

82

Trajectories for the HIL head-on encounter are shown in Figure 4-27. It

falsely appears in this horizontal plane view that the aircraft collide. However, in

Figure 4-28, the altitude time-history shows that the aircraft achieved altitude

separation at CPA and successfully avoided a collision.

Figure 4-28: HIL Head-on Simulation Altitude

It is interesting that this encounter differs from the SIL test, which maintained

lateral separation. Differences in the trajectories, though slight relative to the

trajectory’s scale, can cause significant differences in the resultant avoidance

commands. Also, uncertainty in both tests will inevitably cause differences. Although

differences are expected, the lack of any considerable lateral separation and opposing

turn rate commands resulting in the aircraft turning towards each other are evidence

of 1) poor command tracking and 2) conflicting interpretations of geometry between

200 205 210 215 220 225 230
290

295

300

305

310

315

320

325

330

t, s

A
lt,

 m

200 205 210 215 220 225 230
Man

Nav

M
od

e

200 205 210 215 220 225 230
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2

83

the collision cone algorithm and guidance logic. This single encounter shows the

importance of multi-dimensional commands in a geometric algorithm.

Figure 4-29: HIL Head-on Simulation Airspeed Avoidance Command

The CA commands are shown in Figures 4-29 through 4-31. As alluded to

previously, the turn rate commands are opposite in sign, which for a head-on

trajectory turns the aircraft in the same direction. It can be seen in the trajectory figure

the aircraft are still oscillating around the nominal trajectory at the point of CA

activation. The aircraft were most likely at an orientation that warranted the

commanded turn rates, but based on future knowledge of the desired trajectory, they

are undesirable.

200 205 210 215 220 225 230
13

14

15

16

17

A
irs

pe
ed

, m
/s

UAS1

200 205 210 215 220 225 230
Man

Nav

M
od

e

Actual
Des
Mode

200 205 210 215 220 225 230
13

13.5

14

14.5

15

t, s

A
irs

pe
ed

, m
/s

UAS2

200 205 210 215 220 225 230
Man

Nav

M
od

e

Actual
Des
Mode

84

Figure 4-30: HIL Head-on Simulation Turn Rate Avoidance Command

Figure 4-31: HIL Head-on Simulation Pitch Avoidance Command

200 205 210 215 220 225 230
-2

-1

0

1

2

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

200 205 210 215 220 225 230
Man

Nav

M
od

e

Actual
Des
Mode

200 205 210 215 220 225 230
-2

-1

0

1

2

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

200 205 210 215 220 225 230
Man

Nav

M
od

e

Actual
Des
Mode

200 205 210 215 220 225 230
-10
-8
-6
-4
-2
0
2
4

P
itc

h,
 d

eg

UAS1

200 205 210 215 220 225 230
Man

Nav

M
od

e
Actual
Des
Mode

200 205 210 215 220 225 230
-4

-2

0

2

4

t, s

P
itc

h,
 d

eg

UAS2

200 205 210 215 220 225 230
Man

Nav

M
od

e

85

In Figure 4-31, the aircraft pitch response to the avoidance commands

contains a one to two degree steady-state error. The pitch commands from the CA

algorithm for UAS 1 are positive and for UAS 2 are negative and should separate the

aircraft. However, both responses are positive because the error is larger than the

negative commands for UAS 2. This results in both aircraft climbing as seen in

Figure 4-28 but at much different rates. This is an autopilot issue requiring PID gain

tuning, but it did not cause loss of altitude separation. The airspeed command for

UAS 2 remains at the nominal speed, but this is also an effect of autopilot

configuration. The speed changes commanded by the CA algorithm are not large

enough for interpretation by the autopilot.

Figure 4-32: HIL Head-on Simulation Range

200 205 210 215 220 225 230
0

200

400

600

t, s

R
, m

200 205 210 215 220 225 230
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

86

The range plot, Figure 4-32, indicates loss of lateral separation, but roughly

shows the smaller altitude separation. Figures for the other two-ship encounters,

Approaching, Abeam, and Converging, are in Appendix E. Table 4-4 shows key

statistics of each of the two-ship encounters.

Table 4-4: HIL Simulation Results, Key Statistics

Parameter

Value

Head-on Approach Abeam Converge

Time of Minimum Lateral Separation 223.47 s 584.83 s 608.36 s 189.2 s

Minimum Lateral Separation 7.3 m 24.77 s 27.83 m 65.2 m

Time of Minimum Slant Range 223.47 s 584.83 s 608.36 s 189.2 s

Minimum Slant Range 13.54 m 27.01 m 31.85 m 66.26 m

UAS1 Alt at Tmin,LS 317.33 m 316.83 m 315.67 m 300.67 m

UAS2 Alt at Tmin,LS 306.5 m 306.33 m 299.67 m 308.00 m

UAS1 Alt at Tmin,SR 317.33 m 316.83 m 315.67 m 300.67 m

UAS2 Alt at Tmin,SR 306.5 m 306.33 m 299.67 m 308.00 m

HIL two-ship simulations stressed the importance of minimum altitude

separation by means of a pitch command. Only the Converging test case maintained

the full lateral separation, though the Abeam and Approaching cases were over 20 m

and also achieved altitude separation. Three of the cases also achieved their full

altitude separation. The HIL results departed from the SIL results in separation trends,

but are favorable in their own right and display successful CA. Communication

87

“buffer” delay issues, similar to those in SIL testing, caused delays in Mode

switching back to NAV mode after CA was successful.

Figure 4-33: HIL Three-ship Simulation Trajectories

A three-ship HIL test is completed and compared to the SIL test. Figure 4-33

shows the resultant trajectories, and Figure 4-34 is a close-up view of the origin and

the CPA locations. The CPA between distinct pairs of UAS is distinguished in the

same manner used in SIL; color represents a particular UAS and line type denotes a

distinct UAS pair. UAS 3 noticeably deviated from its nominal trajectory before the

collision encounter and CA initiation. Its waypoint following, albeit poor, further

challenged the CA algorithm because of the maneuvering.

-500 -400 -300 -200 -100 0 100 200 300 400

-500

-400

-300

-200

-100

0

100

200

X, m

Y
, m

UAS1
UAS2
UAS3
RUAS1-2

RUAS1-3
RUAS2-1

RUAS2-3

RUAS3-1

RUAS3-2
CPA

88

Figure 4-34: HIL Three-ship Simulation Trajectories, Zoomed to Origin

Table 4-5 shows key statistics for the HIL three-ship simulation. UAS 1 and 2

achieved more than the required altitude separation at CPA, UAS 1 and 3 also

achieved full altitude separation as well as nearly achieving lateral separation, and

UAS 2 and 3 achieved full lateral separation. Unfortunately, the separations cannot be

fully attributed to CA commands. It will be seen in later figures that the Mode switch

for CA for UAS 2 and 3 occurs after CPA. This is undoubtedly due to communication

delays because commands are still issued after CPA, gleaning more evidence of a

communication buffer that stores packets for transmission in a queue.

-60 -40 -20 0 20 40 60 80

-40

-30

-20

-10

0

10

20

30

40

50

60

X, m

Y
, m

UAS1
UAS2
UAS3
RUAS1-2

RUAS1-3
RUAS2-1

RUAS2-3

RUAS3-1

RUAS3-2
CPA

89

Table 4-5: HIL Three-ship Simulation Results, Key Statistics

Parameter

Value

1-2 (2-1) 1-3 (3-1) 2-3 (3-2)

Time of Minimum Lateral Separation 874.09 s 872.01 s 872.01 s

Minimum Lateral Separation 15.05 m 25.36 m 30.64 m

Time of Minimum Slant Range 874.09 s 872.01 s 872.01 s

Minimum Slant Range 22.46 m 30.35 m 30.66 m

UAS1 Alt at Tmin,LS 317 m 316 m

UAS2 Alt at Tmin,LS 300 m 300 m

UAS3 Alt at Tmin,LS 299 m 299 m

UAS1 Alt at Tmin,SR 317 m 316 m

UAS2 Alt at Tmin,SR 300 m 300 m

UAS3 Alt at Tmin,SR 299 m 299 m

Although individual separation criteria were met, it is important to understand

why some separation criteria in particular dimensions were not achieved. One glaring

piece of evidence exists in the airspeed command, shown in Figure 4-35. It is unclear

whether no airspeed commands actually were received by the autopilots, or whether

they were too small to be interpreted by the autopilots, but no speed changes were

commanded. They were unquestionably commanded by the CA algorithm because

the other commands were processed by the autopilots.

90

Figure 4-35: HIL Three-ship Simulation Airspeed Command

Both combinations of failed lateral separation involved UAS 1. It can be seen

in Figure 4-36 why this possibly happened. UAS 1 did not respond to or did not

receive a turn rate command. Unfortunately, because turn rate commands cannot be

recorded, it is impossible to tell which is the case. It is speculated that if UAS 1 had

responded to a turn rate command, the UAS 1-2 and UAS 1-3 combinations would

have achieved lateral separation because 1) UAS 2-3 successfully achieved lateral

separation with their commands which also included separation considerations for

UAS 1 (global approach), and 2) UAS 1 responded successfully to its vertical

commands to achieve altitude separation.

850 855 860 865 870 875 880 885 890 895
13.5

14

14.5

Ai
rsp

ee
d,

m/
s

UAS1

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
de

Actual
Des
Mode

850 855 860 865 870 875 880 885 890 895
13.5

14

14.5

Ai
rsp

ee
d,

m/
s

UAS2

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
de

Actual
Des
Mode

850 855 860 865 870 875 880 885 890 895
13.5

14

14.5

t, s

Ai
rsp

ee
d,

m/
s

UAS3

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
de

Actual
Des
Mode

91

Figure 4-36: HIL Three-ship Simulation Turn Rate Avoidance Command

Figure 4-37: HIL Three-ship Simulation Pitch Avoidance Command

850 855 860 865 870 875 880 885 890 895
-1

-0.5

0

0.5

1

Tu
rn

Ra
te,

 de
g/s

UAS1

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
de

Actual
Des
Mode

850 855 860 865 870 875 880 885 890 895
-1

-0.5

0

0.5

1

Tu
rn

Ra
te,

 de
g/s

UAS2

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
de

Actual
Des
Mode

850 855 860 865 870 875 880 885 890 895
-1

-0.5
0

0.5
1

1.5
2

t, s

Tu
rn

Ra
te,

 de
g/s

UAS3

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
de

Actual
Des
Mode

850 855 860 865 870 875 880 885 890 895
-6
-5
-4
-3
-2
-1
0
1
2
3

Pit
ch

, d
eg

UAS1

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
deActual

Des
Mode

850 855 860 865 870 875 880 885 890 895
-3

-2

-1

0

1

2

Pit
ch

, d
eg

UAS2

850 855 860 865 870 875 880 885 890 895
Man

Nav
Mo

de

Actual
Des
Mode

850 855 860 865 870 875 880 885 890 895
-10
-8
-6
-4
-2
0
2
4
6
8

t, s

Pit
ch

, d
eg

UAS3

850 855 860 865 870 875 880 885 890 895
Man

Nav

Mo
de

Actual
Des
Mode

92

UAS 1 achieved altitude separation from both UAS 2 and 3 because it

immediately received and responded to its pitch command (see Figure 4-37). UAS 2

and 3 did not achieve altitude separation. This, again, is undoubtedly due to them

receiving their pitch commands long after (estimated to be 10-20 sec) they were

actually commanded. The steps in their commands after the Mode switch are

uncharacteristic of the guidance commands processed by the avoidance algorithm.

They should be smooth and continuous as seen in the UAS 1 command. The

command steps are more evidence of communication problems, seemingly due to a

communication “bottle-neck” that transmits commands sporadically.

Figure 4-38 and Figure 4-39 show the HIL three-ship range and altitude,

respectively. The late Mode switches for UAS 2 and 3 are apparent in the range plot.

UAS 1 altitude separation is evident in the altitude figure. It is curious that UAS 1

receives and responds to its Mode switch pitch command immediately, but does not

receive or respond to its turn rate or altitude command. After further investigation, the

order of command transmittals in the CA algorithm code is this: 1) mode switch, 2)

airspeed, 3) pitch, 4) turn rate. The author makes the following hypothesis about these

curious events. The mode switch happens immediately, and the airspeed command is

transmitted, but is too small to be processed by the autopilot. The pitch command is

then sent successfully. The turn rate command is added to the queue, along with

commands for UAS 2 and 3, and the queue begins to build and delays subsequently

accumulate. Further investigation into the workings of the Kestrel libraries and how

command packets are transmitted may begin to shed light on these peculiarities.

93

Figure 4-38: HIL Three-ship Simulation Range

Figure 4-39: HIL Three-ship Simulation Altitude

850 855 860 865 870 875 880 885 890 895
0

100

200

300

400

500

600

t, s

R
, m

850 855 860 865 870 875 880 885 890 895
Man

Nav

M
od

e

R1-2

R1-3
R2-3

CA Limit
Lat Min Sep
Mode(1)
Mode(2)
Mode(3)

850 855 860 865 870 875 880 885 890 895
275

280

285

290

295

300

305

310

315

320

325

330

335

340

t, s

A
lt,

 m

850 855 860 865 870 875 880 885 890 895
Man

Nav

M
od

e

850 855 860 865 870 875 880 885 890 895
Man

Nav

850 855 860 865 870 875 880 885 890 895
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2
UAS 3
Mode 3

94

3. Flight Test Results

Flight tests were flown at Camp Atterbury, Indiana, a military installation with

restricted airspace enabling autonomous flight in controlled airspace. An entire ground

unit including the GCS, test support, and repair equipment was used as the test operations

center. The GCS is equipped with the same laptop used in HIL tests along with additional

communication and video equipment used with the BATCAM systems. The GCS test

operations area, located in the front of the ground unit, is shown in Figure 4-40 and a test

aircraft, BATCAM 1, is shown in Figure 4-41.

Figure 4-40: Flight Test Ground Control Station

Detailed flight test procedures, provided in Appendix G, were written and

presented at AFIT to a safety and technical review board for test approval prior to launch.

Safety considerations included the ballistic footprint of debris falling in the event of an

actual collision. Emergency procedures were written specifically for CA testing in the

case of unresponsive BATCAM aircraft under CA control. Safety precautions included

50 ft altitude separation warranting a relatively over-sized minimum separation volume

95

and waypoint placements that resulted in a theoretical collision point separated from the

GCS by three times the ballistic debris footprint.

Figure 4-41: AFIT's BATCAM 1

Flight test procedures were written for two-ship and three ship encounters at the

engagement angles used in SIL and HIL testing. Two-ship tests at two engagement angles

were actually flown and will be reviewed in detail in later discussions. Wind conditions

were a cause of changes to some of the flight test procedures. Waypoint patterns were

constructed to produce the desired collision encounters in the test range area. These

patterns were adjusted in orientation with respect to the Camp Atterbury runway to align

the mean wind direction perpendicular to the flight paths in order to reduce discrepancies

in ground speed. Also, for flight paths that could not be aligned perpendicular to the wind

direction, speed adjustments were made in Navigation mode waypoint settings to account

for head and tail winds. The Camp Atterbury runway and two-ship CA test waypoints are

shown in Figure 4-42. Solid lines represent planned waypoints and dashed lines represent

96

actual test waypoints after, approximately, a 20 deg counter-clockwise adjustment for

winds. The total range between waypoints was also reduced in order to ensure the

BATCAMs were in-view throughout the entire test.

Figure 4-42: Two-Ship Flight Test Waypoints over Camp Atterbury

The BATCAMs in each collision encounter were separated in altitude by 50 ft.

This separation is included for two reasons: 1) safety, and 2) BATCAM altitude holding.

In previous flight tests of the BATCAMs, they were found to hold altitude only within

plus or minus 30 ft. To account for this, the vertical minimum separation in the algorithm

was set to 20 m (~65 ft) for all tests. The lateral minimum separation was also increased

to 60 m to excite the horizontal avoidance commands and flatten out the minimum

separation cylinder. It was found during the flight tests that significant “weaving”

occurred in navigation mode when transitioning to the line of sight between waypoints.

This introduced additional uncertainty in the tests for collision detection and command

133m

N

97

generation and was partially removed by changing cross-track settings in Virtual Cockpit

for Navigation mode. Unfortunately, these oscillatory flight patterns were not alleviated

entirely and are apparent in flight test data.

3.1. Pre-flight Ground Testing

Ground tests were completed prior to BATCAM launch to verify two issues

that cannot be determined in HIL testing. Test personnel physically walked with

BATCAMs in-hand towards each other as though they were actually flying and

activated CA. In the first ground-test, an R/C Manual mode exists in the Kestrel

system that provides radio control of the BATCAMs for a safety pilot through the

COMM BOX to the Kestrel autopilot. To safely proceed with testing, it had to be

shown that R/C mode could over-ride CA commands in the event the aircraft become

unresponsive during collision encounters. This was verified in ground tests. The R/C

mode is limited to control over only one aircraft at a time, and a switch to another

aircraft is made in Virtual Cockpit. It was found that even though R/C control will

supersede CA in Manual mode, Virtual Cockpit will not switch R/C control to

another aircraft when communication blockages are present in the communication

channels. This limitation presents additional risk to recovering unresponsive aircraft

and was a major contributor to reducing the number of completed tests. A second

ground test was completed to ensure the autonomous mode switching in the CA

algorithm could complete the entire CA process with all flight test equipment

activated. It was verified that CA can detect a collision, switch to Manual mode, issue

98

guidance commands, and return to Navigation mode autonomously with the entire

flight test configuration.

3.2. Flight Testing

Two engagement angles were flown in the flight test, Head-on and

Approaching. Multiple encounters per engagement angle, four for Head-on and two

for Approaching, were flown and each one resulted in a positive collision detection

and avoidance maneuver transmission. The remaining two-ship encounters and the

three-ship encounter were not flown because of communication delay problems

allegedly caused by a packet transmission buffer processing at a slower rate than

command generation. This has yet to be substantiated. The last test and, ironically,

the most successful in terms of collision avoidance data collection, resulted in both

BATCAMs becoming unresponsive and emergency procedures were executed. Both

aircraft were successfully recovered. The unresponsiveness is caused by a build-up of

avoidance commands that are slowly processed even after the CA application is

terminated. A newer version of the Kestrel autopilot is available with a faster

processor, but the precise location of the delay in the communication system should

be found before any equipment is acquired.

The second Approaching encounter, and final test, resulted in the best

encounter because of the geometric alignment at CA initiation, the aircrafts’ response

to commands, and data quality. The trajectories for this encounter are shown in

Figure 4-43 and the range between the aircraft is shown in Figure 4-44.

99

Figure 4-43: Flight Test Approaching Encounter 2 Trajectories

Figure 4-44: Flight Test Approaching Encounter 2 Range

-350 -300 -250 -200 -150 -100 -50 0 50 100 150
-300

-250

-200

-150

-100

-50

0

50

100

X, m

Y
, m

UAS1
UAS2
RUAS1

RUAS2

CPA

725 730 735 740 745 750 755 760
0

50

100

150

200

250

300

350

400

t, s

R
, m

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

100

The mode switch to Manual mode for BATCAM 2 and BATCAM 1 CA was

activated simultaneously at the maximum CA range as expected. The range at CPA

for this encounter was approximately 47 m. The desired minimum separation of 60 m

was not fully maintained, but appropriate avoidance maneuvers were commanded and

did result in large separation distances in the presence of uncertainties. The mode

switch and altitude are shown in Figure 4-45. It should be mentioned that even though

the aircraft are supposed to be separated by 50 ft in altitude, it can clearly be seen that

they hold altitude poorly in navigation mode and are nearly co-altitude at times.

Figure 4-45: Flight Test Approaching Encounter 2 Altitude

It is peculiar that BATCAM 2 dives after its switch to CA control, but it is at a

higher altitude than BATCAM 1. After further investigation into the vertical

commands, BATCAM 2 was sent a positive pitch command to climb, but lost altitude

725 730 735 740 745 750 755 760
75

95

115

135

155

175

t, s

A
lt,

 m

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

725 730 735 740 745 750 755 760
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2

101

because of a decrease in angle of attack. The trim angle of attack was larger than the

pitch command sent to the BATCAM. Despite the aircraft response, the algorithm

was functioning properly and provided intuitive commands. As discussed in Chapter

III, the interface between the CA algorithm and the Kestrel autopilot did not allow

flight path angle commands and only offered orientation angle commands. A small

angle of attack assumption and small dynamic delay between a pitch change and the

resultant altitude change assumption were made for algorithm integration. The

assumptions are shown to be inaccurate and will require changes in the algorithm

interface to command different variables. The author has spoken with Procerus

representatives, and climb rate commands are available in later versions of the Kestrel

autopilot. Thus, integration improvements may be possible with updated equipment,

although it is possible in newer versions the turn rate commands may have been

removed. The pitch response is shown in Figure 4-46.

After CA initiation for BATCAM 1, it is commanded to decrease altitude. It

pitches down but has a large steady state error and maintains a positive pitch angle.

As a result, BATCAM 1 sustains a large angle of attack and actually begins to climb.

Both BATCAM 1 and 2 exhibited altitude responses opposite to what was expected.

One possible explanation is wind causing large differences in airspeed and

subsequently angle of attack, resulting in the exact opposite reaction to what is

expected and what was commanded. In navigation mode, large oscillations can be

seen in pitch, and observed also in the altitude plot and result in poor altitude

tracking. In CA mode, commands are smooth and relatively benign early in the

102

encounter. This is exactly the pattern one would want in collision situations and gives

assurance to the algorithm’s design.

Figure 4-46: Flight Test Approaching Encounter 2 Pitch Response

The airspeed response is shown in Figure 4-47 and the turn rate response is in

Figure 4-48. BATCAM 1 is commanded to initially increase its airspeed and then

steadily decreases throughout the encounter. The commands to BATCAM 2 are

constant and at a slightly lower airspeed than in navigation mode. The BATCAM 1

response contains a steady-state error resulting in a slower airspeed, and the

BATCAM 2 response contains a steady-state error resulting in a faster airspeed.

These errors are caused by the BATCAMs turning into and away from the wind.

725 730 735 740 745 750 755 760
-15
-10
-5
0
5

10
15
20
25

P
itc

h,
 d

eg

UAS1

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

Actual
Des
Mode

725 730 735 740 745 750 755 760
-5

0

5

10

15

t, s

P
itc

h,
 d

eg

UAS2

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

Actual
Des
Mode

103

Figure 4-47: Flight Test Approaching Encounter 2 Airspeed Response

Figure 4-48: Flight Test Approaching Encounter 2 Turn Rate Response

725 730 735 740 745 750 755 760
6

8

10

12

14

A
irs

pe
ed

, m
/s

UAS1

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

Actual
Des
Mode

725 730 735 740 745 750 755 760
10

11

12

13

14

t, s

A
irs

pe
ed

, m
/s

UAS2

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

Actual
Des
Mode

725 730 735 740 745 750 755 760
-40
-30
-20
-10

0
10
20
30
40

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

Actual
Des
Mode

725 730 735 740 745 750 755 760
-40
-30
-20
-10

0
10
20
30
40

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

725 730 735 740 745 750 755 760
Man

Nav

M
od

e

Actual
Des
Mode

104

In SIL and HIL testing, it was not possible to record the turn rate command.

However, in flight test, the turn rate command is recorded, but only in navigation

mode. When in Manual mode, the command returns to zero, but not instantaneously.

This is evidence of another autopilot control loop that generates turn rate commands

is the one being recorded, and drifts to zero when not in navigation mode.

Unfortunately, this still means CA turn rate commands are unavailable for recording,

and only conjectures can be made about the response. One obvious conclusion about

turn rate is that the measurements are extremely noisy. Only qualitative observations

can be made, and no clear command pattern can be determined. By comparing to the

trajectories in Figure 4-43, BATCAM 2 clearly receives a positive turn rate

command, and BATCAM 1 also receives a positive command, though much less

aggressive. These trends agree with those seen in Figure 4-48.

Figure 4-49: Flight Test Head-on Encounter 2 Trajectories

-300 -250 -200 -150 -100 -50 0 50 100 150

-200

-150

-100

-50

0

50

100

150

X, m

Y
, m

UAS1
UAS2
RUAS1

RUAS2

CPA

105

One of the most successful Head-on encounters was the second one flown.

The BATCAMs were transitioning into their waypoint following routes and turned

towards each other at a much smaller range (200 m) than the maximum CA range

(300 m). Both BATCAMs switched to CA mode simultaneously after the CA

algorithm immediately detected an imminent violation of minimum separation. The

initial encounter through CPA was well behaved and demonstrated successful

avoidance maneuvers. The range at CPA was approximately 45 m, and is about the

same as the Approaching encounter discussed previously (47 m). The uncertainties in

the system and environment caused consistent deviations from the desired minimum

separation for both of these encounters. The trajectories for this encounter are in

Figure 4-49. The range plot, in Figure 4-50, shows the CPA at approximately 785 sec

and then additional undesired mode switching afterwards due to the communication

delay and subsequent command build-up.

The excessive mode switching in Figure 4-50 after the CPA was caused by

additional potential collision encounters. The communication delay did not allow a

switch back to navigation mode and the BATCAMs continued processing old

avoidance commands that introduced new encounters. After the command buffer was

exhausted, the BATCAMs did return to navigation mode.

BATCAM 1 switched to CA mode and began to climb, even though it was at

a lower altitude. This disagrees with the pitch command, which was correctly

commanded by the algorithm. BATCAM 1 is initially commanded to pitch down but

106

because of a steady state error, it maintains a positive pitch angle and climbs. The

altitude is in Figure 4-51 and the pitch response is in Figure 4-52.

Figure 4-50: Flight Test Head-on Encounter 2 Range

Figure 4-51: Flight Test Head-on Encounter 2 Altitude

760 765 770 775 780 785 790 795 800 805 810
0

50

100

150

200

250

300

350

400

t, s

R
, m

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

760 765 770 775 780 785 790 795 800 805 810
75

95

115

135

155

175

t, s

A
lt,

 m

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2

107

Figure 4-52: Flight Test Head-on Encounter 2 Pitch Response

Figure 4-53: Flight Test Head-on Encounter 2 Airspeed Response

760 765 770 775 780 785 790 795 800 805 810
-12
-8
-4
0
4
8

12
16
20

P
itc

h,
 d

eg

UAS1

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e

Actual
Des
Mode

760 765 770 775 780 785 790 795 800 805 810
-8
-4
0
4
8

12
16
20

t, s

P
itc

h,
 d

eg

UAS2

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e

Actual
Des
Mode

760 765 770 775 780 785 790 795 800 805 810
6

8

10

12

14

A
irs

pe
ed

, m
/s

UAS1

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e
Actual
Des
Mode

760 765 770 775 780 785 790 795 800 805 810
10

12

14

16

18

t, s

A
irs

pe
ed

, m
/s

UAS2

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e

Actual
Des
Mode

108

The airspeed commands, in Figure 4-53, from mode switch to CPA are well

behaved. After the CPA, when CA should be turned off, they begin to look like a

bang-bang type control. This is caused by the same problem seen in SIL testing where

the CA airspeed commands are overwritten because of control loop settings beyond

those adjusted for CA Manual mode. The turn rate commands, in Figure 4-54, behave

as expected and exhibit commands positive in sign. As the aircraft approach CPA,

positive turn rate commands would separate the aircraft.

Figure 4-54: Flight Test Head-on Encounter 2 Turn Rate Response

An interesting Head-on encounter, not for its alignment or data quality, but for

its stressing characteristics on CA is discussed next. BATCAM 2 was established in

its transition from waypoint one to two but BATCAM 1 was lagging in the pattern

and was merging into BATCAM 2’s path in the fourth Head-on encounter. The CA

760 765 770 775 780 785 790 795 800 805 810
-50
-40
-30
-20
-10

0
10
20
30
40
50

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e

Actual
Des
Mode

760 765 770 775 780 785 790 795 800 805 810
-50
-40
-30
-20
-10

0
10
20
30
40
50

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

760 765 770 775 780 785 790 795 800 805 810
Man

Nav

M
od

e

Actual
Des
Mode

109

immediately detected the potential collision and initiated maneuvers for both aircraft

while BATCAM 1 was in its turn. Sufficient separation (80 m) was still successfully

maintained even with such close proximity prior to detection. This case shows that

minimum separation or more can still be maintained with little time before the CPA

by issuing aggressive commands. The trajectories for this encounter are shown in

Figure 4-55.

The data rate for this encounter was quite poor. For the entire collision

encounter, data was recorded once only every few seconds and explains the

discontinuous telemetry plots.

Figure 4-55: Flight Test Head-on Encounter 4 Trajectories

-300 -200 -100 0 100
-150

-100

-50

0

50

100

150

200

250

300

X, m

Y
, m

UAS1
UAS2
RUAS1

RUAS2

CPA

110

Figure 4-56: Flight Test Head-on Encounter 4 Altitude

Figure 4-57: Flight Test Head-on Encounter 4 Range

240 245 250 255 260 265
75

95

115

135

155

175

t, s

A
lt,

 m

240 245 250 255 260 265
Man

Nav

M
od

e

240 245 250 255 260 265
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2

240 245 250 255 260 265
0

50

100

150

200

250

300

350

400

t, s

R
, m

240 245 250 255 260 265
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

111

Altitude and range are shown in Figures 4-56 and 4-57, respectively. The

altitude responses display consistent patterns with their associated commands.

BATCAM 1 behaves as expected; it is commanded to pitch down and responds by

losing altitude. BATCAM 2 is commanded to pitch up and initially begins gaining

altitude. However, it eventually loses altitude even though it maintains airspeed. Even

with this loss, the BATCAMs are still separated in altitude by 33 m and successfully

surpass the minimum 20 m of separation. The rapidly changing dynamics are difficult

to characterize because data is recorded at a slow rate, as much as five seconds

between points. The pitch and airspeed responses are shown in Figures 4-58 and 4-59,

respectively.

Figure 4-58: Flight Test Head-on Encounter 4 Pitch Response

240 245 250 255 260 265
-15

-10

-5

0

5

10

15

P
itc

h,
 d

eg

UAS1

240 245 250 255 260 265
Man

Nav

M
od

e

Actual
Des
Mode

240 245 250 255 260 265
-5

0

5

10

15

20

25

t, s

P
itc

h,
 d

eg

UAS2

240 245 250 255 260 265
Man

Nav

M
od

e

Actual
Des
Mode

112

Figure 4-59: Flight Test Head-on Encounter 4 Airspeed Response

Figure 4-60: Flight Test Head-on Encounter 4 Turn Rate Response

240 245 250 255 260 265
6

8

10

12

14

A
irs

pe
ed

, m
/s

UAS1

240 245 250 255 260 265
Man

Nav

M
od

e

Actual
Des
Mode

240 245 250 255 260 265
8

10

12

14

16

18

t, s

A
irs

pe
ed

, m
/s

UAS2

240 245 250 255 260 265
Man

Nav

M
od

e

Actual
Des
Mode

240 245 250 255 260 265
-40

-20

0

20

40

60

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

240 245 250 255 260 265
Man

Nav

M
od

e
Actual
Des
Mode

240 245 250 255 260 265

-40

-20

0

20

40

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

240 245 250 255 260 265
Man

Nav

M
od

e

Actual
Des
Mode

113

The trajectories in Figure 4-55 clearly show both BATCAMs receive positive

turn rate commands. Because the measurements for turn rate are obtrusively noisy

and infrequent, this is not apparent in the turn rate data as shown in Figure 4-60.

Table 4-6: Flight Test Statistics

Parameter

Flight

Head-on Approach

1 2 31 4 1 2

Time of Minimum
Lateral Separation

676.74 s 785.17 s 343.88 s 253.67 s 567.76 s 750.95 s

Minimum Lateral
Separation

13.19 m 42.04 m 255.22 m 80.41 m 233.97 m 45.72 m

Time of Minimum
Slant Range

676.74 s 785.17 s 343.88 s 253.67 s 567.76 s 750.95 s

Minimum Slant
Range

24.24 m 45.11 m 255.34 m 86.98 m 236.83 m 47.32 m

UAS1 Alt at
Tmin,LS

117.00 m 130.50 m 124.33 m 107.17 m 101.83 m 134.50 m

UAS2 Alt at
Tmin,LS

137.33 m 146.83 m 132.20 m 140.33 m 138.54 m 122.28 m

UAS1 Alt at
Tmin,SR

117.00 m 130.50 m 124.33 m 107.17 m 101.83 m 134.50 m

UAS2 Alt at
Tmin,SR

137.33 m 146.83 m 132.20 m 140.33 m 138.54 m 122.28 m

1. Virtual Cockpit application displayed an error and closed resulting in data
loss. Aircraft initiated “lost-comm” mode.

Statistics for the two encounters discussed above and the remaining

encounters flown are in Table 4-6. Plots for the remaining flights are in Appendix F.

Head-on, Flight 1, resulted in good geometry, but only BATCAM 1 entered CA

mode. Flight 3 of the Head-on encounters showed promising geometry and both

BATCAMs began performing avoidance maneuvers, but Virtual Cockpit returned an

114

error and shut down. This caused “lost comm” mode in the autopilots and they were

commanded to return to their rally points. Only the initial maneuver and commands

was recorded. This error was an anomaly, and has never before been seen in flight

test or bench testing.

The first Approaching encounter was an excellent encounter for command

generation and response, but the BATCAMs reacted much more aggressively than

anticipated. BATCAM 1 turned nearly 180 deg and the aircraft never made a close

approach at or near the minimum separation. These maneuvers can be partially

attributed to wind conditions during the flight. Further investigation into the

conversion of avoidance algorithm commands to Kestrel commands might alleviate

some aggressive maneuvering for these particular aircraft. Additionally, the

proportional navigation gains can be tuned for the aircraft if it is determined that they

are accurately tracking the commands.

3.3. Flight Test Summary

Flight test validated the collision avoidance algorithm’s ability to perform

collision detection and avoidance maneuver generation. The BATCAM aircraft were

able to respond to and avoid a minimum separation volume around each other as a

result of the CA algorithm and in the presence of environmental and system

uncertainty. The algorithm not only generated guidance commands, it provided

system-specific flags that initiated autonomous mode switching with the human

operator completely out of the loop. Flight test also confirmed successful integration

of the algorithm into the BATCAM system, although improvements need to be made.

115

Flight test showed that turn rate and airspeed commands were effectively

commanded and sufficiently tracked to provide lateral separation. Pitch commands

that are responsible for altitude changes did not, however, provide vertical separation.

Assumptions made in order to use pitch commands were not valid for this particular

aircraft and resulted in undesirable vertical responses. Aircraft telemetry data was

sufficient to detect potential losses of separation and issue successful avoidance

commands, but was often excessively noisy and infrequent.

116

V. Conclusions and Recommendations

1. Chapter Overview

Chapter V provides a discussion of the collision avoidance system’s development,

application, and testing, as well as a “big picture” examination of current CA topics.

Many aspects of this application and testing are specific to the available hardware and

software, but considerations were always included throughout the design and evolution of

the algorithm for other systems and missions. Military and civil applications were

considered because, ultimately, the technologies related to this research will be far-

reaching.

2. Conclusions of Research

A collision avoidance algorithm was developed and successfully implemented in

a multi-vehicle miniature unmanned aircraft system. This algorithm was conceived after

an extensive literature review of current conflict detection and resolution theories and

methods with an attempt to capture the benefits of those methods and apply them in a

single algorithm. The detection portion of the algorithm, based on geometric methods,

has inherent simplifications (i.e. nominal trajectory projections) that are more robustly

addressed in other approaches (e.g. probabilistic methods) but are overcome by its

simplistic application to many systems and threat environments. No pre- or post-

processing is required to represent the overall threat environment, and only tuning of

navigation constants are required for different platforms. Novel developments include an

approach to provide spatial awareness of all threats in a global sense to each vehicle in

the cooperative system. Algorithm interfaces allow both cooperative and non-cooperative

117

inputs to be processed simultaneously and provide a truly global consideration of the

environment only limited by sensing capability. The avoidance component of the

algorithm is coupled with the detection algorithm to provide autonomous, continuous,

and reactive commands to any collision encounter without a need for hard-coded threat

prioritization or scripted maneuvers. Simple maneuver coordination logic is applied in the

vertical dimension for the direction of the command. All other commands are completely

autonomous and governed by the guidance law.

Effects of uncertainties in the environment and the host-system are mitigated by

defining separation volumes that are sufficiently large and by commanding maneuvers in

multiple dimensions for separation. Multi-dimensional commands provide a layer of

redundancy in that the algorithm is always trying to achieve two independent separation

distances. If one fails, the other is still active.

3. Significance of Research

This research resulted in the first known flight tests of a multiple-vehicle, global,

three-dimensional CA algorithm. Miniature unmanned aircraft were placed in dynamic,

real-world encounters and responded to autonomously generated avoidance commands.

The algorithm provides an autonomous CA capability for any encounter geometry and is

not limited to any particular system or sensing capability. This algorithm evolves from

contemporary and prevalent research areas focused on conflict detection and resolution,

sense and avoid, and CA of manned aircraft, robotics, and unmanned technologies.

Advantages of certain methods were exploited and an amenable approach was taken

while addressing limitations. A mixture of theoretical fields were combined to develop

118

the final algorithm: robotics (e.g. collision cone approach), homing guidance (e.g.

proportional navigation), and airspace management (e.g. separation criteria). The

significance of the results is not just an assessment of the effectiveness of this particular

algorithm, but the consideration of all aspects of deconflicting unmanned systems, i.e.

sensing and measurement requirements, system integration, control commands and

tracking, and necessary test procedures and equipment to evaluate the effectiveness.

The ability to avoid obstacles and objects is of utmost concern for unmanned

systems and the missions they are assigned. Weaponized unmanned aircraft will

proliferate as technology advances and an alternative to endangering our warfighters

becomes reliable and readily available. Their numbers and missions will expand and

inevitably make a CA capability a system requirement. CA is already a requirement for

any unmanned system requesting access to the NAS as stated in FAA regulations [35].

The specifics of this requirement are not defined and will not be defined for some time.

As the author is writing this thesis, a bill has been introduced in the United States

Congress with provisions for defining a timeline and requirements for unmanned system

integration into the NAS [36]. The Federal Aviation Administration and the users

requesting access to the NAS (Department of Defense, Department of Homeland

Security, Customs and Border Protection, and Commercial and Private Users) are

struggling to find a resolution between safety concerns and the desire for rapid

integration and are willing to spend hundreds of millions of dollars to find a solution. CA

is an integral part of unmanned system access to the NAS and a “sense and avoid”

capability is arguably the most important, and unfortunately, ambiguous necessity for

approval.

119

4. Recommendations for Action

Bench test and flight test activities and results have revealed several items

pertaining to the CA implementation, not the algorithm itself, which require immediate

attention. Communication delay issues resulting from a build-up of commands due to

processing limitations, not from a constant transmission delay, need to be addressed. This

is a UAS-specific characteristic external to the algorithm that needs to be precisely

located in the communication chain. Previous testing with the ANT laboratory BATCAM

system experienced similar problems and an application-specific solution was

implemented [37]. This solution involves pulsing commands so a build-up of

communication packets does not occur. This is not compatible with a CA algorithm that

sends more commands to more aircraft. Due to the small amount of time available to

deconflict the aircraft in a collision encounter, any attempt to clear unprocessed packets

from a buffer would only increase the collision potential. Quantization is another option

to alleviate increasing delays in the communication channels. This would reduce the

number of packets sent, but would result in larger commands being generated later in the

encounter because of smaller resultant command responses in the beginning of the

encounter. The proportional navigation guidance commands are proportional to the rate

of change of the collision cone boundaries, which are small at larger ranges and

continuously increase as the range decreases. If the commands do not continuously grow

proportional to the bound rates and are quantized based on a pre-determined delta value,

deconfliction will occur later in the encounter timeline with larger magnitudes of

resultant commands. Dynamic delta values in the quantization may lessen this effect, but

is out of scope of this thesis.

120

One possible improvement to the increasing communication delay is aggregating

the three commands for each aircraft into a single packet, thereby, reducing the number

of packets sent. The current interface between the CA algorithm and the autopilot does

not support this. Commands are currently sent separately to each BATCAM in a

sequential manner. Action should be taken to determine if the Kestrel autopilot

communication interfaces support this modification. It should also be determined whether

or not the Kestrel autopilot and Virtual Cockpit GCS support separate communication

links for telemetry and control packets. This would divide the two-way communication

traffic and possibly hasten transmissions.

The small angle of attack assumption and the assumption that the dynamic delay

between pitch changes and altitude changes were proven to be inaccurate in flight tests

with environmental uncertainty. These assumptions were applied in order to convert the

algorithm flight path angular rate command to the available Kestrel pitch command. The

most current version of the Kestrel autopilot includes a climb rate command that can be

more directly calculated from flight path rate commands. Regrettably, the reason turn rate

command recording was not available is because turn rate commands may not be

available in that same version of the autopilot as explained in discussions with Procerus

engineers. It seems compatibility between all desired commands cannot be acquired

simultaneously. This is an unfortunate side-effect of an evolving autopilot design and the

users’ attempt to develop their own applications.

121

5. Recommendations for Future Research

In any system with uncertainty, either inherent in the system or as a result of

external inputs, there is no guarantee of desired results; there is only a probability that

they will be achieved successfully. This applies to CA and the efforts to maintain

minimum separation. The likelihood that this thesis’ CA system will deconflict aircraft

and maintain minimum separation could be quantitatively determined in Monte Carlo

simulations prior to additional flight tests and implementation into more systems.

Parametric studies should be completed to determine, based on the probabilities from

each Monte Carlo run, what separation volume lateral and vertical distances would result

in the highest likelihood of maintaining separation within some constraints. An

independent variable in these studies is the required probability of maintaining

separation. Depending on the system, the mission, and the user, should the separation be

maintained 90%, 95% or 99% of the time? For inexpensive, expendable systems, a

simple, less reliable CA system may be desired. For a complex, expensive system such as

a Global Hawk UAS, an accurate and dependable CA system will be required.

Furthermore, in cases where separation is lost, what is the probability that the

aircraft will actually collide? These statistics can be gleaned from the same Monte Carlo

runs as for loss of separation studies, but more iterations may be required to have a

statistically sufficient amount of encounters. These types of studies could be performed

for a variety of algorithms or algorithm variations. Analyses such as these will be

required by the FAA for candidate sense and avoid systems prior to unmanned system

integration into the NAS.

122

The algorithm developed in this research was intentionally constructed in a

generic manner for compatibility with many systems. However, when applied to a

specific system, certain aspects of the algorithm can be tailored for enhanced

performance. The most obvious variables were discussed in this thesis: the separation

volume, the maximum CA range, and the proportional navigation constants. Further

modifications could be made for increased probability of maintaining separation. For

example, all commands in three dimensions are applied for every collision encounter. It

may be determined in simulations or flight test that particular encounter geometries

require only one type of command or require more benign commands. A command

selection algorithm could be designed with this information and energy savings or less

impact on the UAS mission could be achieved. Adaptive proportional gains could be

derived that result in an optimal avoidance maneuver. Techniques such as these have

been researched, and were discussed in Chapter II, but not for an algorithm such as this,

i.e. global, three-dimensional, and depending on the optimality condition, cooperative.

The effectiveness of any modification will depend on the aircraft and the threats it will

encounter.

This algorithm relied on the Kestrel autopilot navigation mode to return the

aircraft to waypoint following and their planned routes. Optimal trajectory generation

could be used to return the aircraft to the planned routes before navigation mode is once

again enabled. This would result in a CA and recovery algorithm that would both

deconflict and restore the aircraft with minimal deviation from their original paths.

123

6. Summary

Fundamental theory was examined and further developed for application to the

collision avoidance problem in this thesis, and an algorithm was designed, coded, and

tested in ideal simulations. Application to an unmanned aircraft system, including

algorithm development, user and system interface construction, and software-in-the-loop

and hardware-in-the-loop testing was completed to validate the approach. Flight tests

were conducted to assess the algorithm and system’s performance in the presence of

operational and environmental uncertainty. The results of all of the above efforts and

events were discussed in detail along with high level discussions about current issues

related to the collision avoidance topic.

124

Appendix A: Collision Avoidance Algorithm/Virtual Cockpit Interface

Inputs:

i
UAS

i
UAS

i
UAS

i
UAS

i
UAS

i
UAS

i
UAS

a

V
P

γ

ψ

γ

ψ

 where i indicates the ith UAS

=
i
UAS

i
UAS

i
UAS

i
UAS

Z
Y
X

P

 = UAS Local-Level Referenced Position (can be derived from GPS

Latitude, Longitude, and Altitude)

i
UASV = UAS Speed (preferably groundspeed from GPS, airspeed only if groundspeed not

available)

i
UASψ = UAS Ground Track (from GPS, heading is only acceptable if winds are accounted

for)

i
UASγ = UAS Vertical Flight Path Angle (FPA) (can be derived, preferably, from velocity

components, or assumed to equal, cautiously, aircraft pitch angle for small angle of
attack)

i
UASa = UAS Translational Acceleration (can be assumed equal to the body X-axis

acceleration for small angle of attack)

i
UASψ = UAS Turn Rate

i
UASγ = UAS Rate of Change of Vertical Flight Path Angle (can be derived from climb

acceleration, or from both γ and body Z-axis acceleration)

125

Table A-1: Algorithm to Kestrel Autopilot Variable Matrix, Virtual Cockpit 2.4

 ICD Kestrel
 Label Variable Name

Position

X F15 (F13) GPS East Pos
Estimate (Measured)

Y F16 (F14) GPS North Pos
Estimate (Measured)

Z F20 GPS Altitude
Speed V F18 (F17) Ground Speed

Estimate (Measured)
Ground Track Ψ F19 (F7) GPS Heading

(Filtered)
Vertical FPA γ (F2) (Theta)
Acceleration a F52 Ax (accelerometer)
Turn Rate ψdot F33 Heading Rate
Rate of Change of FPA1 γdot F54 and F18 (F17) Az and Speed

Values in parentheses are alternates.

1. Assumption:
V
Az−

≈γ

Table A-2: Algorithm to Kestrel Autopilot Packet Variable Matrix, Virtual Cockpit
2.4

ICD Kestrel Communications
Name Packet Index Variable Name Units

Position

X 248 14 GPS Lon deg
248 22 GPS Lon home deg

Y 248 8 GPS Lat deg
248 18 GPS Lat home deg

Z 248 2 GPS Alt (m+1000)*6
Speed V 248 0 GPS Velocity (m/s+10)*20
Ground Track ψ 248 4 GPS Heading rad*1000
Vertical FPA

= −

V
h1sinγ

249 76 Actual Climb Rate m/s*300

Acceleration a 18 40 Ax m/s^2*1000
Turn Rate ψdot 249 10 Heading Rate rad/s*1000
Rate of
Change of
FPA1

V
Az−

≈γ
18 44 Az m/s^2*1000

1. Assumes Z-axis is down

126

Conversions:

X = (Lon - Lon Home) * dLon2m [Lon in deg]
Y = (Lat - Lat Home) * dLat2m [Lat in deg]

aLat = (Lat + Lat Home)/2
dLon2m = 111415.13*cos(aLat) – 94.55*cos(3*aLat)
dLat2m = 111132.09 – 566.05*cos(2*aLat) + 1.2*cos(4*aLat)

Outputs:

Algorithm:

com

com

com

a
γ
ψ

 = turn rate command, rate of change of vertical FPA command, acceleration

command

Kestrel Autopilot:

1. Desired Turn Rate
2. Desired Pitch Angle
3. Desired Airspeed

+
+=

dtaV
dt

V comdes

comdes

com

des

des

des

γθ
ψ

θ
ψ

 where small angle of attack is assumed, and dt is the time step

between command transmittals ***must be set according to command transmissions***

Table A-3: Algorithm to Kestrel Autopilot Command Packet Matrix, Virtual
Cockpit 2.4

Set Desired Value (Packet 231) Kestrel Communications (Section 3.58)

Command Byte Index Variable Name Units

desψ 27 Desired turn rate rad/s

desθ 7 Desired pitch rad

desV 23 Desired airspeed m/s

127

Appendix B: Collision Cone Boundary Rates

The following definitions and nomenclature are repeated here for convenience from [7]
and [27]. The variables and are the rates of change of the collision cone boundaries
with respect to the line of sight.

N21, Case 1:

][21 null==ηη

N21, Case 2:

() () ζ
ν
νζη

νζη
η

 −+−
+

= 1
1

1 tan
cos

A

() () ζ
ν
νζηπ

νζηπ
η

 −−−+
−−

−
= 2

2
2 tan

cos
A

N21, Case 3:

211 case
ηη =

() () ζ
ν
νζηπ

νζηπ
η

 −−−−+
−−−

−
= 2

2
2 tan

cos
A

N21, Case 4:

021 ==ηη

N22, Case 1:

][~~
21 null==ηη

N22, Case 2:

() () ζ
ν
νζη

νζη
η


~~~tan~~cos

~
~

1
1

1 −+−
+

=
A  

( ) ( ) ζ
ν
νζηπ

νζηπ
η 







~~~tan~~cos

~
~

2
2

2 −−−+
−−

−
=

A

128

N22, Case 3:

211
~~

case
ηη =

() () ζ
ν
νζηπ

νζηπ
η


~~~tan~~cos

~
~

2
2

2 −−−−+
−−−

−
=

A  

 
N22, Case 4: 
 

0~~
21 ==ηη   

 
where  
 

θβµ −=−= ;22 RrRp  

INT

UAS

V
V

p
p

p
pA =















+
=

+

+
= − νζµµ ;

1
sin;

1
sincos

2

1

2
 

ζπζµµ
−=

+

−
=

~;
1
sincos~

2p
pA  

( ) ( )µµζµζµζ sincoscossincoscos pApA −+−= 

  

( ) ( )µµζµµζζ sincos~coscos~sin~~cos~ pApA ++−= 

  

ζζ 2cosp =  

ζζ 

 −=
~  

 
 

 

 

 

 

 



 

129 

Appendix C:  Ideal Simulation Plots 

 
Figure C-1:  Ideal Approaching Simulation Trajectories, CPA at 32.9 s 

 

 
Figure C-2:  Ideal Approaching Simulation Avoidance Algorithm Commands 

-100 0 100 200
-300

-250

-200

-150

-100

-50

0

50

100

150

200

X, m

Y
, m

 

 

UAS1
UAS2
RUAS1

RUAS1

CPA

10 15 20 25
-0.4

-0.2

0
dV/dt, m/s

 

 
UAS1
UAS2

10 15 20 25
0

2

4
dα /dt, deg/s

10 15 20 25
-1

0

1
dγ/dt, deg/s

t, s



 

130 

 
Figure C-3:  Ideal Approaching Simulation Kestrel Commands 

 

 
Figure C-4:  Ideal Approaching Simulation Range 

 

10 15 20 25
12.5

13
V m/s

 

 

UAS1
UAS2

10 15 20 25
-4

-2

0
dψ/dt, deg/s

10 15 20 25
-2

0

2
θ, deg

t, s

10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

t, s

R
an

ge
, m

 

 

Range
CA Max
Min Lat Sep



 

131 

 
Figure C-5:  Ideal Approaching Simulation Altitude 

 

 
Figure C-6:  Ideal Abeam Simulation Trajectories, CPA at 23.4 s 

 

0 5 10 15 20 25 30 35 40 45 50
75

80

85

90

95

100

105

110

115

120

t, s

A
lti

tu
de

, m

 

 

UAS1
UAS2
VO

-150 -100 -50 0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

X, m

Y
, m

 

 

UAS1
UAS2
RUAS1

RUAS1

CPA



 

132 

 
Figure C-7:  Ideal Abeam Simulation Avoidance Algorithm Commands 

 
Figure C-8:  Ideal Abeam Simulation Kestrel Commands 

0 1 2 3 4 5 6 7 8 9 10
-0.2

-0.1

0
dV/dt, m/s

 

 
UAS1
UAS2

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0
dα /dt, deg/s

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5
dγ/dt, deg/s

t, s

0 1 2 3 4 5 6 7 8 9 10
12.5

13
V m/s

 

 

UAS1
UAS2

0 1 2 3 4 5 6 7 8 9 10
0

2

4
dψ/dt, deg/s

0 1 2 3 4 5 6 7 8 9 10
-2

0

2
θ, deg

t, s



 

133 

 

 
Figure C-9:  Ideal Abeam Simulation Range 

 
Figure C-10:  Ideal Abeam Simulation Altitude 

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

450

t, s

R
an

ge
, m

 

 

Range
CA Max
Min Lat Sep

0 5 10 15 20 25 30 35 40 45 50
75

80

85

90

95

100

105

110

115

120

t, s

A
lti

tu
de

, m

 

 

UAS1
UAS2
VO



 

134 

 

 
Figure C-11:  Ideal Converging Simulation Trajectories, CPA at 55 s 

 
Figure C-12:  Ideal Converging Simulation Avoidance Algorithm Commands 

-100 0 100 200 300 400

-500

-400

-300

-200

-100

0

100

X, m

Y
, m

 

 
UAS1
UAS2
RUAS1

RUAS1

CPA

5 10 15 20 25 30
-0.1

-0.05

0
dV/dt, m/s

 

 
UAS1
UAS2

5 10 15 20 25 30
-2

-1

0
dα /dt, deg/s

5 10 15 20 25 30
-0.2

0

0.2
dγ/dt, deg/s

t, s



 

135 

 

 
Figure C-13:  Ideal Converging Simulation Kestrel Commands 

 
Figure C-14:  Ideal Converging Simulation Range 

5 10 15 20 25 30
12.5

13
V m/s

 

 

UAS1
UAS2

5 10 15 20 25 30
0

1

2
dψ/dt, deg/s

5 10 15 20 25 30
-1

0

1
θ, deg

t, s

10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

t, s

R
an

ge
, m

 

 

Range
CA Max
Min Lat Sep



 

136 

 
Figure C-15:  Ideal Converging Simulation Altitude 

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50 60 70
80

85

90

95

100

105

110

115

120

t, s

A
lti

tu
de

, m

 

 

UAS1
UAS2
VO



 

137 

Appendix D:  SIL Simulation Plots 

 
Figure D-1:  SIL Approaching Simulation Trajectories 

 
Figure D-2:  SIL Approaching Simulation Airspeed 

-200 0 200 400
-500

-400

-300

-200

-100

0

100

200

300

X, m

Y
, m

 

 

UAS1
UAS2
RUAS1

RUAS2

CPA

440 445 450 455 460 465 470 475 480
12

13

14

15

A
irs

pe
ed

, m
/s

UAV1

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

Actual
Des
Mode

440 445 450 455 460 465 470 475 480
10

11

12

13

14

15

t, s

A
irs

pe
ed

, m
/s

UAV2

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

Actual
Des
Mode



 

138 

 
Figure D-3:  SIL Approaching Simulation Turn Rate 

 
Figure D-4:  SIL Approaching Simulation Pitch 

440 445 450 455 460 465 470 475 480

-8

-4

0

4

Tu
rn

 R
at

e,
 d

eg
/s

UAV1

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

Actual
Des
Mode

440 445 450 455 460 465 470 475 480

-4

-2

0

2

4

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAV2

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

Actual
Des
Mode

440 445 450 455 460 465 470 475 480
-5

0

5

10

P
itc

h,
 d

eg

UAV1

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

Actual
Des
Mode

440 445 450 455 460 465 470 475 480
-15

-10

-5

0

5

10

t, s

P
itc

h,
 d

eg

UAV2

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

Actual
Des
Mode



 

139 

 
Figure D-5:  SIL Approaching Simulation Range 

 
Figure D-6:  SIL Approaching Simulation Altitude 

440 445 450 455 460 465 470 475 480
0

200

400

600

800

t, s

R
, m

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

440 445 450 455 460 465 470 475 480

280

290

300

310

320

t, s

A
lt,

 m

 

 

440 445 450 455 460 465 470 475 480
Man

Nav

M
od

e

440 445 450 455 460 465 470 475 480
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

140 

 
Figure D-7:  SIL Abeam Simulation Trajectories 

 
Figure D-8:  SIL Abeam Simulation Airspeed 

-100 0 100 200 300 400

-400

-300

-200

-100

0

100

200

X, m

Y
, m

 

 

UAS1
UAS2
RUAS1

RUAS2

CPA

90 95 100 105 110 115 120 125 130 135 140
10

11

12

13

14

15

A
irs

pe
ed

, m
/s

UAV1

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode

90 95 100 105 110 115 120 125 130 135 140
10

11

12

13

14

15

t, s

A
irs

pe
ed

, m
/s

UAV2

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode



 

141 

 
Figure D-9:  SIL Abeam Simulation Turn Rate 

 
Figure D-10:  SIL Abeam Simulation Pitch 

90 95 100 105 110 115 120 125 130 135 140
-6

-3

0

3

6

9

12

Tu
rn

 R
at

e,
 d

eg
/s

UAV1

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode

90 95 100 105 110 115 120 125 130 135 140

0

5

10

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAV2

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode

90 95 100 105 110 115 120 125 130 135 140
-10

-5

0

5

10

P
itc

h,
 d

eg

UAV1

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode

90 95 100 105 110 115 120 125 130 135 140
-8

-4

0

4

8

t, s

P
itc

h,
 d

eg

UAV2

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
Des
Mode



 

142 

 
Figure D-11:  SIL Abeam Simulation Range 

 
Figure D-12:  SIL Abeam Simulation Altitude 

90 95 100 105 110 115 120 125 130 135 140
0

200

400

600

800

t, s

R
, m

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

90 95 100 105 110 115 120 125 130 135 140

280

290

300

310

320

t, s

A
lt,

 m

 

 

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

M
od

e

90 95 100 105 110 115 120 125 130 135 140
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

143 

 
Figure D-13:  SIL Converging Simulation Trajectories 

 
Figure D-14:  SIL Converging Simulation Airspeed 

-200 -100 0 100 200 300

-400

-300

-200

-100

0

100

200

X, m

Y
, m

 

 
UAS1
UAS2
RUAS1

RUAS2

CPA

135 140 145 150 155 160 165 170
11

12

13

14

15

A
irs

pe
ed

, m
/s

UAV1

 

 

135 140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
Des
Mode

135 140 145 150 155 160 165 170
10

12

14

16

t, s

A
irs

pe
ed

, m
/s

UAV2

 

 

135 140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
Des
Mode



 

144 

 
Figure D-15:  SIL Converging Simulation Turn Rate 

 
Figure D-16:  SIL Converging Simulation Pitch 

 

135 140 145 150 155 160 165 170
-10

-8

-6

-4

-2

0

2

Tu
rn

 R
at

e,
 d

eg
/s

UAV1

 

 

135 140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
Des
Mode

135 140 145 150 155 160 165 170
-2
0
2
4
6
8

10
12
14
16

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAV2

 

 

135 140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
Des
Mode

135 140 145 150 155 160 165 170
-8

-4

0

4

8

P
itc

h,
 d

eg

UAV1

 

 

135 140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
Des
Mode

135 140 145 150 155 160 165 170
-20
-15
-10
-5
0
5

10
15

t, s

P
itc

h,
 d

eg

UAV2

 

 

135 140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
Des
Mode



 

145 

 
Figure D-17:  SIL Converging Simulation Range 

 
Figure D-18:  SIL Converging Simulation Altitude 

140 145 150 155 160 165 170
0

500

t, s

R
, m

 

 

140 145 150 155 160 165 170
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

140 145 150 155 160 165 170
250

275

300

325

t, s

A
lt,

 m

 

 

140 145 150 155 160 165 170
Man

Nav

M
od

e

140 145 150 155 160 165 170
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

146 

Appendix E:  HIL Simulation Plots 

 
Figure E-1:  HIL Approaching Simulation Trajectories 

 
Figure E-2:  HIL Approaching Simulation Airspeed Avoidance Command 

-200 0 200 400

-400

-300

-200

-100

0

100

200

300

X, m

Y
, m

 

 

UAS1
UAS2
RUAS1

RUAS2

CPA

560 565 570 575 580 585 590 595 600
11

12

13

14

15
UAV1

A
irs

pe
ed

, m
/s

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e
Actual
Des
Mode

560 565 570 575 580 585 590 595 600
13

14

15

16

17
UAV2

t, s

A
irs

pe
ed

, m
/s

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e

Actual
Des
Mode



 

147 

 

 
Figure E-3:  HIL Approaching Simulation Turn Rate Avoidance Command 

 
Figure E-4:  HIL Approaching Simulation Pitch Avoidance Command 

560 565 570 575 580 585 590 595 600
-2

-1

0

1

2
UAV1

Tu
rn

 R
at

e,
 d

eg
/s

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e

Actual
Des
Mode

560 565 570 575 580 585 590 595 600
-1

-0.5

0

0.5

1
UAV2

t, s

Tu
rn

 R
at

e,
 d

eg
/s

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e

Actual
Des
Mode

560 565 570 575 580 585 590 595 600
-10

-7.5

-5

-2.5

0

2.5

5
UAV1

P
itc

h,
 d

eg

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e
Actual
Des
Mode

560 565 570 575 580 585 590 595 600
-2

-1

0

1

2

3
UAV2

t, s

P
itc

h,
 d

eg

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e

Actual
Des
Mode



 

148 

 

 
Figure E-5:  HIL Approaching Simulation Range 

 
Figure E-6:  HIL Approaching Simulation Altitude 

560 565 570 575 580 585 590 595 600
0

200

400

600

t, s

R
, m

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

560 565 570 575 580 585 590 595 600
290

295

300

305

310

315

320

325

330

t, s

A
lt,

 m

 

 

560 565 570 575 580 585 590 595 600
Man

Nav

M
od

e

560 565 570 575 580 585 590 595 600
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

149 

 
Figure E-7:  HIL Abeam Simulation Trajectories 

 

 
Figure E-8:  HIL Abeam Simulation Airspeed Avoidance Command 

-200 -100 0 100 200 300 400

-400

-300

-200

-100

0

100

200

X, m

Y
, m

 

 

UAS1
UAS2
RUAS1

RUAS2

CPA

570 575 580 585 590 595 600 605 610 615 620
12

13

14

15

16

17

A
irs

pe
ed

, m
/s

UAV1

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

Actual
Des
Mode

570 575 580 585 590 595 600 605 610 615 620
12

13

14

15

16

t, s

A
irs

pe
ed

, m
/s

UAV2

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

Actual
Des
Mode



 

150 

 
Figure E-9:  HIL Abeam Simulation Turn Rate Avoidance Command 

 
Figure E-10:  HIL Abeam Simulation Pitch Avoidance Command 

570 575 580 585 590 595 600 605 610 615 620
-1

-0.5

0

0.5

1

Tu
rn

 R
at

e,
 d

eg
/s

UAV1

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

Actual
Des
Mode

570 575 580 585 590 595 600 605 610 615 620
-1

-0.5

0

0.5

1

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAV2

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

Actual
Des
Mode

570 575 580 585 590 595 600 605 610 615 620
-1

-0.5

0

0.5

1

1.5

2

P
itc

h,
 d

eg

UAV1

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

Actual
Des
Mode

570 575 580 585 590 595 600 605 610 615 620
-1

-0.5

0

0.5

1

1.5

t, s

P
itc

h,
 d

eg

UAV2

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

Actual
Des
Mode



 

151 

 
Figure E-11:  HIL Abeam Simulation Range 

 
Figure E-12:  HIL Abeam Simulation Altitude 

570 575 580 585 590 595 600 605 610 615 620
0

200

400

600

t, s

R
, m

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

570 575 580 585 590 595 600 605 610 615 620
290

295

300

305

310

315

320

325

t, s

A
lt,

 m

 

 

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

M
od

e

570 575 580 585 590 595 600 605 610 615 620
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

152 

 
Figure E-13:  HIL Converging Simulation Trajectories 

 
Figure E-14:  HIL Converging Simulation Airspeed Avoidance Command 

-100 0 100 200 300 400
-600

-500

-400

-300

-200

-100

0

X, m

Y
, m

 

 
UAS1
UAS2
RUAS1

RUAS2

CPA

150 160 170 180 190 200 210 220
11

12

13

14

15

A
irs

pe
ed

, m
/s

UAV1

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e
Actual
Des
Mode

150 160 170 180 190 200 210 220
11
12
13
14
15
16
17
18

t, s

A
irs

pe
ed

, m
/s

UAV2

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e



 

153 

 
Figure E-15:  HIL Converging Simulation Turn Rate Avoidance Command 

 
Figure E-16:  HIL Converging Simulation Pitch Avoidance Command 

150 160 170 180 190 200 210 220
-1

-0.5

0

0.5

1

Tu
rn

 R
at

e,
 d

eg
/s

UAV1

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e

Actual
Des
Mode

150 160 170 180 190 200 210 220
-1

-0.5

0

0.5

1

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAV2

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e

Actual
Des
Mode

150 160 170 180 190 200 210 220
-6

-4

-2

0

2

4

P
itc

h,
 d

eg

UAV1

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e
Actual
Des
Mode

150 160 170 180 190 200 210 220
-2

0

2

4

t, s

P
itc

h,
 d

eg

UAV2

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e



 

154 

 
Figure E-17:  HIL Converging Simulation Range 

 
Figure E-18:  HIL Converging Simulation Altitude 

150 160 170 180 190 200 210 220
0

200

400

600

t, s

R
, m

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

150 160 170 180 190 200 210 220
290

295

300

305

310

315

320

t, s

A
lt,

 m

 

 

150 160 170 180 190 200 210 220
Man

Nav

M
od

e

150 160 170 180 190 200 210 220
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

155 

Appendix F:  Flight Test Plots 

 
Figure F-1:  Flight Test Head-on Encounter 1 Trajectories 

 
Figure F-2:  Flight Test Head-on Encounter 1 Airspeed Response 

-200 -100 0 100

-200

-150

-100

-50

0

50

100

150

200

250

X, m

Y
, m

 

 
UAS1
UAS2
RUAS1

RUAS2

CPA

660 665 670 675 680 685
6

8

10

12

14

A
irs

pe
ed

, m
/s

UAS1

 

 

660 665 670 675 680 685
Man

Nav

M
od

e
Actual
Des
Mode

660 665 670 675 680 685
6

8

10

12

14

16

t, s

A
irs

pe
ed

, m
/s

UAS2

 

 

660 665 670 675 680 685
Man

Nav

M
od

e

Actual
Des
Mode



 

156 

 
Figure F-3:  Flight Test Head-on Encounter 1 Turn Rate Response 

 
Figure F-4:  Flight Test Head-on Encounter 1 Pitch Response 

660 665 670 675 680 685
-45

-30

-15

0

15

30

45

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

 

 

660 665 670 675 680 685
Man

Nav

M
od

e

Actual
Des
Mode

660 665 670 675 680 685
-40
-30
-20
-10

0
10
20
30
40

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

 

 

660 665 670 675 680 685
Man

Nav

M
od

e

Actual
Des
Mode

660 665 670 675 680 685
-20
-15
-10
-5
0
5

10
15

P
itc

h,
 d

eg

UAS1

 

 

660 665 670 675 680 685
Man

Nav

M
od

e

Actual
Des
Mode

660 665 670 675 680 685
-10
-5
0
5

10
15
20
25

t, s

P
itc

h,
 d

eg

UAS2

 

 

660 665 670 675 680 685
Man

Nav

M
od

e

Actual
Des
Mode



 

157 

 
Figure F-5:  Flight Test Head-on Encounter 1 Range 

 
Figure F-6:  Flight Test Head-on Encounter 1 Altitude 

660 665 670 675 680 685
0

50

100

150

200

250

300

350

400

t, s

R
, m

 

 

660 665 670 675 680 685
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

660 665 670 675 680 685
75

95

115

135

155

175

t, s

A
lt,

 m

 

 

660 665 670 675 680 685
Man

Nav

M
od

e

660 665 670 675 680 685
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

158 

 

 
Figure F-7:  Flight Test Head-on Encounter 3 Trajectories 

 
Figure F-8:  Flight Test Head-on Encounter 3 Airspeed Response 

-300 -200 -100 0 100
-300

-200

-100

0

100

200

X, m

Y
, m

 

 
UAS1
UAS2
RUAS1

RUAS2

CPA

335 336 337 338 339 340 341 342 343 344
6

8

10

12

14

A
irs

pe
ed

, m
/s

UAS1

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e
Actual
Des
Mode

335 336 337 338 339 340 341 342 343 344
8

10

12

14

16

t, s

A
irs

pe
ed

, m
/s

UAS2

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e

Actual
Des
Mode



 

159 

 
Figure F-9:  Flight Test Head-on Encounter 3 Turn Rate Response 

 
Figure F-10:  Flight Test Head-on Encounter 3 Pitch Response 

335 336 337 338 339 340 341 342 343 344
-30

-20

-10

0

10

20

30

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e

Actual
Des
Mode

335 336 337 338 339 340 341 342 343 344
-30
-20
-10

0
10
20
30
40

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e

Actual
Des
Mode

335 336 337 338 339 340 341 342 343 344
-20

-10

0

10

20

30

P
itc

h,
 d

eg

UAS1

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e

Actual
Des
Mode

335 336 337 338 339 340 341 342 343 344
0

10

20

30

t, s

P
itc

h,
 d

eg

UAS2

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e

Actual
Des
Mode



 

160 

 
Figure F-11:  Flight Test Head-on Encounter 3 Range 

 
Figure F-12:  Flight Test Head-on Encounter 3 Altitude 

335 336 337 338 339 340 341 342 343 344
0

100

200

300

400

500

t, s

R
, m

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

335 336 337 338 339 340 341 342 343 344
100

110

120

130

140

150

t, s

A
lt,

 m

 

 

335 336 337 338 339 340 341 342 343 344
Man

Nav

M
od

e

335 336 337 338 339 340 341 342 343 344
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

161 

 
Figure F-13:  Flight Test Approaching Encounter 1 Trajectories 

 
Figure F-14:  Flight Test Approaching Encounter 1 Airspeed Response 

-400 -300 -200 -100 0 100 200

-250

-200

-150

-100

-50

0

50

100

150

200

X, m

Y
, m

 

 
UAS1
UAS2
RUAS1

RUAS2

CPA

555 560 565 570 575 580 585
6

8

10

12

14

A
irs

pe
ed

, m
/s

UAS1

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e
Actual
Des
Mode

555 560 565 570 575 580 585
10

12

14

t, s

A
irs

pe
ed

, m
/s

UAS2

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e

Actual
Des
Mode



 

162 

 
Figure F-15:  Flight Test Approaching Encounter 1 Turn Rate Response 

 
Figure F-16:  Flight Test Approaching Encounter 1 Pitch Response 

555 560 565 570 575 580 585

-20

0

20

40

Tu
rn

 R
at

e,
 d

eg
/s

UAS1

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e

Actual
Des
Mode

555 560 565 570 575 580 585
-60

-40

-20

0

20

t, s

Tu
rn

 R
at

e,
 d

eg
/s

UAS2

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e

Actual
Des
Mode

555 560 565 570 575 580 585
-20

-10

0

10

20

30

P
itc

h,
 d

eg

UAS1

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e

Actual
Des
Mode

555 560 565 570 575 580 585
-10

0

10

20

t, s

P
itc

h,
 d

eg

UAS2

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e

Actual
Des
Mode



 

163 

 
Figure F-17:  Flight Test Approaching Encounter 1 Range 

 
Figure F-18:  Flight Test Approaching Encounter 1 Altitude  

555 560 565 570 575 580 585
0

100

200

300

400

500

t, s

R
, m

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e

Actual
CA Limit
Lat Min Sep
Mode(1)
Mode(2)

555 560 565 570 575 580 585
50

75

100

125

150

175

t, s

A
lt,

 m

 

 

555 560 565 570 575 580 585
Man

Nav

M
od

e

555 560 565 570 575 580 585
Man

Nav

UAS 1
Mode 1
UAS 2
Mode 2



 

164 

Appendix G:  Flight Test Procedures 

 

 



 

165 

 

 



 

166 

 



 

167 

Appendix H:  Collision Avoidance Algorithm MATLAB Code 

MULT_UAS_AA 

function [alphadotc gammadotc vdotc pdcKOUT tcKOUT vcKOUT... 
    r rh rv rdot conflict cflct_array cflct_arrayv] =... 
    
mult_uas_aa(Rl,VO,DMAX,dt,V_ALL,x_ALL,y_ALL,z_ALL,alpha_ALL,gamma_ALL,.
.. 
    vdot_ALL,alphadot_ALL,gammadot_ALL,varargin) 
  
persistent violation evasion evasionv flag flagv 
persistent pdcK tcK vcK 
  
Nuas=length(V_ALL); 
if Nuas<=1, 
    alphadotc=0; %alphadot_ALL; 
    gammadotc=0; %gammadot_ALL; 
    vdotc=0; %vdot_ALL; 
    pdcKOUT=0; %-alphadot_ALL; 
    tcKOUT=0; %gamma_ALL; 
    vcKOUT=0; %V_ALL; 
    r=0.0; 
    rh=0.0; 
    rv=0.0; 
    rdot=0.0; 
    conflict=0.0; 
    cflct_array=0.0; 
    cflct_arrayv=0.0; 
    return; 
else 
    % Pre-allocate some outputs 
    conflict=zeros(1,Nuas); 
    pdcKOUT=zeros(1,Nuas); 
    tcKOUT=zeros(1,Nuas); 
    vcKOUT=zeros(1,Nuas); 
    vdotc=zeros(1,Nuas); 
    gammadotc=zeros(1,Nuas); 
    alphadotc=zeros(1,Nuas); 
end 
  
if isempty(varargin), 
    Nnoncoop=0; 
else 
    Nnoncoop=length(varargin{1}); 
end 
  
if isempty(violation), 
    violation=zeros(1,Nuas); 
    evasion=zeros(1,Nuas); 
    evasionv=zeros(1,Nuas); 
    flag=zeros(1,Nuas); 
    flagv=zeros(1,Nuas); 



 

168 

elseif length(violation)<Nuas, 
    dim_viol=length(violation); 
    dim_addv=Nuas-dim_viol; 
    violation=[violation zeros(1,dim_addv)]; 
    evasion=[evasion zeros(1,dim_addv)]; 
    evasionv=[evasionv zeros(1,dim_addv)]; 
    flag=[flag zeros(1,dim_addv)]; 
    flagv=[flagv zeros(1,dim_addv)]; 
end 
  
if isempty(pdcK), 
    pdcK=-alphadot_ALL; 
    tcK=gamma_ALL; 
    vcK=V_ALL; 
elseif length(pdcK)<Nuas, 
    dim_pdcK=length(pdcK); 
    dim_add=Nuas-dim_pdcK; 
    pdcK=[pdcK' zeros(1,dim_add)]'; 
    tcK=[tcK' gamma_ALL(dim_pdcK+1:end).*ones(1,dim_add)]'; 
    vcK=[vcK' V_ALL(dim_pdcK+1:end).*ones(1,dim_add)]'; 
end 
  
if Nnoncoop>0, 
    V_F_non=varargin{1}; 
    x_F_non=varargin{2}; 
    y_F_non=varargin{3}; 
    z_F_non=varargin{4}; 
    beta_non=varargin{5}; 
    chi_non=varargin{6}; 
    vfdot_non=varargin{7}; 
    betadot_non=varargin{8}; 
    chidot_non=varargin{9}; 
else 
    V_F_non=[]; 
    x_F_non=[]; 
    y_F_non=[]; 
    z_F_non=[]; 
    beta_non=[]; 
    chi_non=[]; 
    vfdot_non=[]; 
    betadot_non=[]; 
    chidot_non=[]; 
end 
  
for jj=1:Nuas, 
  
    V_O=V_ALL(jj); 
    x_O=x_ALL(jj); 
    y_O=y_ALL(jj); 
    z_O=z_ALL(jj); 
    alpha=alpha_ALL(jj); 
    gamma=gamma_ALL(jj); 
    vdot=vdot_ALL(jj); 
    if jj==1, 



 

169 

        indexF=jj+1:Nuas; 
    elseif jj==Nuas, 
        indexF=1:Nuas-1; 
    else 
        indexF=[1:jj-1 jj+1:Nuas]; 
    end 
    indexFall=[indexF -1:-1:-length(V_F_non)]; 
    V_F=[V_ALL(indexF);V_F_non]; 
    x_F=[x_ALL(indexF);x_F_non]; 
    y_F=[y_ALL(indexF);y_F_non]; 
    z_F=[z_ALL(indexF);z_F_non]; 
    beta=[alpha_ALL(indexF);beta_non]; 
    chi=[gamma_ALL(indexF);chi_non]; 
    vfdot=[vdot_ALL(indexF);vfdot_non]; 
    betadot=[alphadot_ALL(indexF);betadot_non]; 
    chidot=[gammadot_ALL(indexF);chidot_non]; 
     
    %Calculate velocity components 
    Vx_O = V_O*cos(alpha)*cos(gamma); 
    Vy_O = V_O*sin(alpha)*cos(gamma); 
    Vz_O = V_O*sin(gamma); 
    Vx_F = V_F.*cos(beta).*cos(chi); 
    Vy_F = V_F.*sin(beta).*cos(chi); 
    Vz_F = V_F.*sin(chi); 
  
    % Range 
    r(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop))    = sqrt((z_F-
z_O).^2+(y_F-y_O).^2+(x_F-x_O).^2); 
    rdot(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop)) = ((Vy_F-
Vy_O).*(y_F-y_O)+(Vx_F-Vx_O).*(x_F-x_O)+(Vz_F-Vz_O).*(z_F-z_O))./... 
        sqrt((z_F-z_O).^2+(y_F-y_O).^2+(x_F-x_O).^2); 
    rh(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop))   = sqrt((y_F-
y_O).^2+(x_F-x_O).^2); 
    rv(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-1+Nnoncoop))   = sqrt((z_F-
z_O).^2); 
  
    % Define Intruder Inputs for ones in Sensor Volume 
    x_F_in=x_F; 
    y_F_in=y_F; 
    z_F_in=z_F; 
    V_F_in=V_F; 
    vfdot_in=vfdot; 
    beta_in=beta; 
    chi_in=chi; 
    betadot_in=betadot; 
    chidot_in=chidot; 
  
    %Reset CCAA flags 
    Fv=violation(jj); 
    Fe=evasion(jj); 
    Fev=evasionv(jj); 
    Ff=flag(jj); 
    Ffv=flagv(jj); 
    Fsv=zeros(1,Nuas-1+Nnoncoop); 



 

170 

  
    %Process inputs 
    psiO=-alpha+pi/2; 
    psiF=-beta_in+pi/2; 
    gammaO=gamma; 
    gammaF=chi_in; 
    psidF=-betadot_in; 
    gammadF=chidot_in; 
  
    %Call CCAA 
    [psidotc gamdotc acc violation(jj) evasion(jj) evasionv(jj) 
flag(jj) flagv(jj) sensvol(jj,:)... 
        conflict(jj) cflct_int cflct_intv]=... 
        cc_pn_aa(x_O,y_O,z_O,V_O,vdot,psiO,gammaO,... 
        x_F_in,y_F_in,z_F_in,V_F_in,vfdot_in,psiF,... 
        gammaF,psidF,gammadF,Rl,VO,Fv,Fe,Fev,Ff,Ffv,Fsv); 
  
    seeint=1:Nuas-1+Nnoncoop; 
    cflct_see_int=[];cflct_true_int=[]; 
    cflct_see_intv=[];cflct_true_intv=[]; 
    %Determine conflict properties, if any 
    if ~isempty(cflct_int), 
        cflct_see_int=seeint(cflct_int); 
        cflct_true_int=indexFall(cflct_see_int); 
    end 
    if ~isempty(cflct_intv), 
        cflct_see_intv=seeint(cflct_intv); 
        cflct_true_intv=indexFall(cflct_see_intv); 
    end 
    cflct_array(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-
1+Nnoncoop))=[cflct_true_int';zeros(Nuas-1+Nnoncoop-
length(cflct_true_int),1)]; 
    cflct_arrayv(1+(jj-1)*(Nuas-1+Nnoncoop):jj*(Nuas-
1+Nnoncoop))=[cflct_true_intv';zeros(Nuas-1+Nnoncoop-
length(cflct_true_intv),1)]; 
  
    %Process outputs 
    alphadotc_=-psidotc; 
    gammadotc_=gamdotc; 
    vdotc_=acc; 
  
    vdotc(jj)=vdotc_; 
    gammadotc(jj)=gammadotc_; 
    alphadotc(jj)=alphadotc_; 
  
    %Kestrel Commands 
    if conflict(jj)>=1, 
        pdcK(jj)=-alphadotc(jj); 
        tcK(jj)=tcK(jj)+gammadotc(jj)*dt; 
        vcK(jj)=vcK(jj)+vdotc(jj)*dt; 
        %Range Check 
        csum=0; 
        for uu=1+(jj-1)*(Nuas-1):jj*(Nuas-1), 
            r_uu=r(uu); 



 

171 

            if ((cflct_array(uu)~=0) && (cflct_arrayv(uu)~=0) && 
r_uu<DMAX); 
                csum=1; 
                break; 
            end 
        end 
        if csum==0, 
            conflict(jj)=0; 
            vdotc(jj)=0; 
            alphadotc(jj)=0; 
            gammadotc(jj)=0; 
            vcK(jj)=V_ALL(jj); 
            pdcK(jj)=-alphadotc(jj); 
            tcK(jj)=gamma_ALL(jj); 
            violation(jj)=0; 
            evasion(jj)=0; 
            evasionv(jj)=0; 
            flag(jj)=0; 
            flagv(jj)=0; 
        end 
    else 
        pdcK(jj)=-alphadotc(jj); 
        tcK(jj)=gamma_ALL(jj); 
        vcK(jj)=V_ALL(jj); 
    end 
  
end 
  
%Coordinate Commands 
cflct_idx=find(conflict>=1); 
cflct_idx_len=length(cflct_idx); 
if cflct_idx_len>1, 
    for jj=1:cflct_idx_len-1, 
        primary=cflct_idx(jj); 
        others=cflct_idx(jj+1:end); 
        for kk=1:length(others), 
            if sign(gammadotc(primary))==sign(gammadotc(others(kk))), 
                gammadotc(others(kk))=-gammadotc(others(kk)); 
                
tcK(others(kk))=tcK(others(kk))+2*gammadotc(others(kk))*dt; 
            end 
        end 
    end 
end 
  
pdcKOUT=pdcK; 
tcKOUT=tcK; 
vcKOUT=vcK; 
 
 

 



 

172 

CC_PN_AA 

function [psidotc gamdotc acc violation evasion evasionv flag flagv 
sensvol... 
    conflict cflct_int cflct_intv]=... 
    
cc_pn_aa(x_O,y_O,z_O,V_O,vdot,psiO,gammaO,x_F,y_F,z_F,V_F,vfdot,psiF,..
. 
    gammaF,psidF,gammadF,Rl,VO,Fv,Fe,Fev,Ff,Ffv,Fsv) 
  
%Minimum Separation Parameters 
R=Rl; 
Hv=VO; 
  
%Determine number if intruders 
Ni=length(x_F); 
  
%Convert aircraft parameters to Collision Cone parameters 
alpha=wrap_mpi2pi(-psiO+pi/2); 
beta(:,1)=wrap_mpi2pi(-psiF+pi/2); 
gamma=wrap_mpi2pi(gammaO); 
chi(:,1)=wrap_mpi2pi(gammaF); 
  
betadot=-psidF; 
chidot=gammadF; 
  
%Calculate velocity components 
Vx_O = V_O*cos(alpha)*cos(gamma); 
Vy_O = V_O*sin(alpha)*cos(gamma); 
Vz_O = V_O*sin(gamma); 
Vx_F = V_F.*cos(beta).*cos(chi); 
Vy_F = V_F.*sin(beta).*cos(chi); 
Vz_F = V_F.*sin(chi); 
  
%Initialize Flags 
violation = Fv; 
evasion = Fe; 
evasionv = Fev; 
flag = Ff; 
flagv = Ffv; 
sensvol = Fsv; 
  
%Calculate necessary parameters 
% range 
r = sqrt((z_F-z_O).^2+(y_F-y_O).^2+(x_F-x_O).^2); 
rh = sqrt((y_F-y_O).^2+(x_F-x_O).^2); 
% line of sight angle 
th=atan2(y_F-y_O,x_F-x_O); 
phii_=atan2(z_F-z_O,cos(th).*(x_F-x_O)+sin(th).*(y_F-y_O)); 
phii=atan2(z_F-z_O,cos(alpha).*(x_F-x_O)+sin(alpha).*(y_F-y_O)); 
% relative velocity along LOS 
vri=V_F.*cos(beta-th).*cos(chi-phii_)-V_O.*cos(alpha-th).*cos(gamma-
phii_); 



 

173 

% relative velocity perp to LOS 
vthi=V_F.*sin(beta-th).*cos(chi-phii_)-V_O.*sin(alpha-th).*cos(gamma-
phii_); 
vphi=V_F.*sin(chi-phii_)-V_O.*sin(gamma-phii_); 
% relative velocity magnitude 
vrel = sqrt((V_O*cos(alpha)*cos(gamma)-V_F.*cos(beta).*cos(chi)).^2+... 
    (V_O*sin(alpha)*cos(gamma)-V_F.*sin(beta).*cos(chi)).^2+... 
    (V_O*sin(gamma)-V_F.*sin(chi)).^2); 
% relative heading 
psirel = atan2((V_O*sin(alpha)-V_F.*sin(beta)),(V_O*cos(alpha)-
V_F.*cos(beta))); 
phirel = atan2((V_O*sin(gamma)-V_F.*sin(chi)),(V_O*cos(gamma)-
V_F.*cos(chi))); 
% Relative azimuth and elevation calculations 
xrfeh = cos(alpha)*(x_F-x_O)+sin(alpha)*(y_F-y_O); 
yrfeh = -sin(alpha)*(x_F-x_O)+cos(alpha)*(y_F-y_O); 
relaz = atan2(-yrfeh,xrfeh); 
rrfev = sqrt(xrfeh.^2+yrfeh.^2)*cos(gamma)+(z_F-z_O)*sin(gamma); 
zrfev = -sqrt(xrfeh.^2+yrfeh.^2)*sin(gamma)+(z_F-z_O)*cos(gamma); 
relel = atan2(zrfev,rrfev); 
  
%Vertical collision circle calculations 
% vertical line of sights to hockey-puck corners 
rRv=sqrt((z_F-z_O).^2+(cos(alpha).*(x_F-x_O)+sin(alpha).*(y_F-
y_O)).^2); 
for oo = 1:Ni, 
    if (z_F(oo)-z_O) >= (Hv), 
        philow(oo) = atan2(rRv(oo).*sin(phii(oo))-
(Hv),rRv(oo).*cos(phii(oo))+R); 
        phihig(oo) = 
atan2(rRv(oo).*sin(phii(oo))+(Hv),rRv(oo).*cos(phii(oo))-R); 
    elseif (z_F(oo)-z_O) < (Hv) && (z_F(oo)-z_O) > -(Hv), 
        philow(oo) = atan2(rRv(oo).*sin(phii(oo))-
(Hv),rRv(oo).*cos(phii(oo))-R); 
        phihig(oo) = 
atan2(rRv(oo).*sin(phii(oo))+(Hv),rRv(oo).*cos(phii(oo))-R); 
    else 
        philow(oo) = atan2(rRv(oo).*sin(phii(oo))-
(Hv),rRv(oo).*cos(phii(oo))-R); 
        phihig(oo) = 
atan2(rRv(oo).*sin(phii(oo))+(Hv),rRv(oo).*cos(phii(oo))+R); 
    end 
end 
psiv = phihig-philow; 
Rv = rRv.*sin(psiv'/2); 
% center of vertical circle 
x_ccv = rRv.*abs(cos(philow' + psiv'/2)).*cos(alpha).*sign(xrfeh); %ALS 
- ABS value function 
y_ccv = rRv.*abs(cos(philow' + psiv'/2)).*sin(alpha).*sign(xrfeh); %ALS 
- ABS value function 
z_ccv = rRv.*sin(philow' + psiv'/2); 
% LOS and relative velocities to vertical circle 
phic_=atan2(z_ccv,cos(th).*(x_ccv)+sin(th).*(y_ccv)); 
phic=atan2(z_ccv,cos(alpha).*(x_ccv)+sin(alpha).*(y_ccv)); 



 

174 

vrc=V_F.*cos(beta-alpha).*cos(chi-phic)-V_O.*cos(alpha-
alpha).*cos(gamma-phic); 
vthc=V_F.*sin(beta-alpha).*cos(chi-phic)-V_O.*sin(alpha-
alpha).*cos(gamma-phic); 
vphc=V_F.*sin(chi-phic)-V_O.*sin(gamma-phic); 
% rate of change of collision avoidance vector angle 
gam = asin(R./rh); 
thdot = ((Vy_F-Vy_O).*(x_F-x_O)-(Vx_F-Vx_O).*(y_F-y_O))./... 
    ((x_F-x_O).^2+(y_F-y_O).^2); 
gamv = asin(Rv./rRv); 
phi = phic; 
h_Phi = sqrt((x_F-x_O).^2+(y_F-y_O).^2); 
Vh_Phi = sqrt((Vx_F-Vx_O).^2+(Vy_F-Vy_O).^2); 
pdden = (h_Phi.^2+(z_F-z_O).^2); 
for pd_i=1:length(pdden), 
    pdden(pd_i)=max([1e-6 pdden(pd_i)]); 
end 
phidot = ((Vz_F-Vz_O).*h_Phi-Vh_Phi.*(z_F-z_O))./pdden; 
  
%Collision Cone parameters 
mu = beta - th; 
nu = (V_O*cos(gamma))./(V_F.*cos(chi)); 
p = R./sqrt(rh.^2-R^2); 
%muv = chi - phi; 
for kl=1:Ni, 
    if sign(xrfeh(kl))>0 && cos(alpha-beta(kl))<0, 
        muv(kl) = (pi-chi(kl)) - phi(kl); 
    else 
        muv(kl) = chi(kl) - phi(kl); 
    end 
end 
nuv = (V_O)./(V_F.*abs(cos(beta-alpha))); %ALS - ABS value function 
pv = Rv./sqrt(rRv.^2-Rv.^2); 
  
pdot = vri.*(-p.^3.*rh/(R^2)); 
mudot = betadot-thdot; 
pdotv = vrc.*(-pv.^3.*rRv./(Rv.^2)); 
mudotv = chidot-phidot; 
nudot = (vdot*cos(gamma))./(V_F.*cos(chi)) - nu.*vfdot./V_F; %ALS 
nudotv = vdot./(V_F.*abs(cos(beta-alpha))) - nuv.*vfdot./V_F; %ALS 
  
%Collision Check 
% initialize cone variables as empty 
acount=[]; 
alpha_up=[];alpha_dn=[];alpha_up_dot=[];alpha_dn_dot=[]; 
acountv=[]; 
alpha_upv=[];alpha_dnv=[];alpha_up_dotv=[];alpha_dn_dotv=[]; 
% check each Intruder 
for kk = 1:Ni, 
    %Check for intruder in sensor volume 
    %Check for miss distance violation 
    violation1=zeros(1,Ni); 
    if r(kk) <= R && z_O>z_F(kk)-Hv && z_O<z_F(kk)+Hv, 
        violation1(kk) = 1; 
        alpha_up=[];alpha_dn=[];alpha_up_dot=[];alpha_dn_dot=[]; 



 

175 

        alpha_upv=[];alpha_dnv=[];alpha_up_dotv=[];alpha_dn_dotv=[]; 
        break; 
    elseif violation == 1, 
        alpha_up=[];alpha_dn=[];alpha_up_dot=[];alpha_dn_dot=[]; 
        alpha_upv=[];alpha_dnv=[];alpha_up_dotv=[];alpha_dn_dotv=[]; 
        break; 
    else 
        %Call Collision Cone 
        [eta_up,eta_dn,eta_up_dot,eta_dn_dot] = 
f_collisioncone4(mu(kk),nu(kk),p(kk),mudot(kk),nudot(kk),pdot(kk)); 
        [eta_upv,eta_dnv,eta_up_dotv,eta_dn_dotv] = 
f_collisioncone4(muv(kk),nuv(kk),pv(kk),mudotv(kk),nudotv(kk),pdotv(kk)
); 
        %Dispose of invalid cones 
        deta=abs(eta_up-eta_dn); 
        detav=abs(eta_upv-eta_dnv); 
        ide=find(deta>1e-4 & deta<2*pi-1e-4); 
        idev=find(detav>1e-4 & detav<2*pi-1e-4); 
        eta_up=eta_up(ide); 
        eta_up_dot=eta_up_dot(ide); 
        eta_dn=eta_dn(ide); 
        eta_dn_dot=eta_dn_dot(ide); 
        eta_upv=eta_upv(idev); 
        eta_up_dotv=eta_up_dotv(idev); 
        eta_dnv=eta_dnv(idev); 
        eta_dn_dotv=eta_dn_dotv(idev); 
        %Define Angular Limits of cones 
        alpha_up = [alpha_up; eta_up' + th(kk)]; 
        alpha_dn = [alpha_dn; eta_dn' + th(kk)]; 
        alpha_up_dot = [alpha_up_dot; eta_up_dot' + thdot(kk)]; 
        alpha_dn_dot = [alpha_dn_dot; eta_dn_dot' + thdot(kk)]; 
  
        alpha_upv = [alpha_upv; eta_upv' + phi(kk)]; 
        alpha_dnv = [alpha_dnv; eta_dnv' + phi(kk)]; 
        alpha_up_dotv = [alpha_up_dotv; eta_up_dotv' + phidot(kk)]; 
        alpha_dn_dotv = [alpha_dn_dotv; eta_dn_dotv' + phidot(kk)]; 
         
        %Record the number of cones 
        acount = [acount length(eta_up)]; 
        acountv = [acountv length(eta_upv)]; 
    end 
end 
violation = max(violation1); 
  
%Check and correct for horizontal cone overlap 
overlap_reg=[]; 
if ~isempty(alpha_up), 
    alpha_up_P = wrap_pos(alpha_up); 
    alpha_dn_N = wrap_neg(alpha_dn); 
    alpha_up_N = wrap_neg(alpha_up); 
    alpha_dn_P = wrap_pos(alpha_dn); 
    [alfs aidx]=sort(alpha_up_P); 
    alpha_up_P=alpha_up_P(aidx); 
    alpha_dn_N=alpha_dn_N(aidx); 
    alpha_up_N=alpha_up_N(aidx); 



 

176 

    alpha_dn_P=alpha_dn_P(aidx); 
    alpha_up=alpha_up(aidx); 
    alpha_dn=alpha_dn(aidx); 
    if sum(acount)>1, 
        for nn = 1:sum(acount)-1, 
            mmsweep=nn+1:sum(acount); 
            for mm = mmsweep, 
                %Correct for Quadrant 1 and 4 overlap/non-overlap and 
                % zero boundary 
                if alpha_dn_N(nn)>alpha_up_N(nn) && 
alpha_dn_N(nn)~=alpha_up_N(mm), 
                    alpha_dn_N(nn)=alpha_dn_N(nn)-2*pi; 
                    alpha_dn_P(nn)=alpha_dn_P(nn)-2*pi; 
                end 
                if alpha_dn_N(mm)>alpha_up_N(mm) && 
alpha_dn_N(mm)~=alpha_up_N(nn), 
                    alpha_dn_N(mm)=alpha_dn_N(mm)-2*pi; 
                    alpha_dn_P(mm)=alpha_dn_P(mm)-2*pi; 
                end 
                if alpha_up_N(nn)>alpha_dn_N(mm) && 
alpha_dn_P(mm)<alpha_up_P(nn), 
                    overlap_reg=[overlap_reg;nn mm]; 
                    [temp loc]=max([alpha_up_P(nn) alpha_up_P(mm)]); 
                    if loc==1, 
                        alpha_up(mm)=alpha_up(nn); 
                        alpha_up_dot(mm)=alpha_up_dot(nn); 
                        %%ALS 
                        alpha_up_P(mm)=alpha_up_P(nn); 
                        alpha_up_N(mm)=alpha_up_N(nn); 
                        %% 
                    elseif loc==2, 
                        alpha_up(nn)=alpha_up(mm); 
                        alpha_up_dot(nn)=alpha_up_dot(mm); 
                        %%ALS 
                        alpha_up_P(nn)=alpha_up_P(mm); 
                        alpha_up_N(nn)=alpha_up_N(mm); 
                        %% 
                    end 
                    [temp1 loc1]=min([alpha_dn_N(nn) alpha_dn_N(mm)]); 
                    if loc1==1, 
                        alpha_dn(mm)=alpha_dn(nn); 
                        alpha_dn_dot(mm)=alpha_dn_dot(nn); 
                        %%ALS 
                        alpha_dn_N(mm)=alpha_dn_N(nn); 
                        alpha_dn_P(mm)=alpha_dn_P(nn); 
                        %% 
                    elseif loc1==2, 
                        alpha_dn(nn)=alpha_dn(mm); 
                        alpha_dn_dot(nn)=alpha_dn_dot(mm); 
                        %%ALS 
                        alpha_dn_N(nn)=alpha_dn_N(mm); 
                        alpha_dn_P(nn)=alpha_dn_P(mm); 
                        %% 
                    end 
                end 



 

177 

            end 
        end 
    end 
end 
%Check and correct for vertical cone overlap 
overlapv_reg=[]; 
if ~isempty(alpha_upv), 
    alpha_up_Pv = wrap_pos(alpha_upv); 
    alpha_dn_Nv = wrap_neg(alpha_dnv); 
    alpha_up_Nv = wrap_neg(alpha_upv); 
    alpha_dn_Pv = wrap_pos(alpha_dnv); 
    [alfsv aidxv]=sort(alpha_up_Pv); 
    alpha_up_Pv=alpha_up_Pv(aidxv); 
    alpha_dn_Nv=alpha_dn_Nv(aidxv); 
    alpha_up_Nv=alpha_up_Nv(aidxv); 
    alpha_dn_Pv=alpha_dn_Pv(aidxv); 
    alpha_upv=alpha_upv(aidxv); 
    alpha_dnv=alpha_dnv(aidxv); 
    if sum(acountv)>1, 
        for nn = 1:sum(acountv)-1, 
            mmsweep=nn+1:sum(acountv); 
            for mm = mmsweep, 
                %Correct for Quadrant 1 and 4 overlap/non-overlap and 
                % zero boundary 
                if alpha_dn_Nv(nn)>alpha_up_Nv(nn) && 
alpha_dn_Nv(nn)~=alpha_up_Nv(mm), 
                    alpha_dn_Nv(nn)=alpha_dn_Nv(nn)-2*pi; 
                    alpha_dn_Pv(nn)=alpha_dn_Pv(nn)-2*pi; 
                end 
                if alpha_dn_Nv(mm)>alpha_up_Nv(mm) && 
alpha_dn_Nv(mm)~=alpha_up_Nv(nn), 
                    alpha_dn_Nv(mm)=alpha_dn_Nv(mm)-2*pi; 
                    alpha_dn_Pv(mm)=alpha_dn_Pv(mm)-2*pi; 
                end 
                if alpha_up_Nv(nn)>alpha_dn_Nv(mm) && 
alpha_dn_Pv(mm)<alpha_up_Pv(nn), 
                    overlapv_reg=[overlapv_reg;nn mm]; 
                    [temp loc]=max([alpha_up_Pv(nn) alpha_up_Pv(mm)]); 
                    if loc==1, 
                        alpha_upv(mm)=alpha_upv(nn); 
                        alpha_up_dotv(mm)=alpha_up_dotv(nn); 
                        %%ALS 
                        alpha_up_Pv(mm)=alpha_up_Pv(nn); 
                        alpha_up_Nv(mm)=alpha_up_Nv(nn); 
                        %% 
                    elseif loc==2, 
                        alpha_upv(nn)=alpha_upv(mm); 
                        alpha_up_dotv(nn)=alpha_up_dotv(mm); 
                        %%ALS 
                        alpha_up_Pv(nn)=alpha_up_Pv(mm); 
                        alpha_up_Nv(nn)=alpha_up_Nv(mm); 
                        %% 
                    end 
                    [temp1 loc1]=min([alpha_dn_Nv(nn) 
alpha_dn_Nv(mm)]); 



 

178 

                    if loc1==1, 
                        alpha_dnv(mm)=alpha_dnv(nn); 
                        alpha_dn_dotv(mm)=alpha_dn_dotv(nn); 
                        %%ALS 
                        alpha_dn_Nv(mm)=alpha_dn_Nv(nn); 
                        alpha_dn_Pv(mm)=alpha_dn_Pv(nn); 
                        %% 
                    elseif loc1==2, 
                        alpha_dnv(nn)=alpha_dnv(mm); 
                        alpha_dn_dotv(nn)=alpha_dn_dotv(mm); 
                        %%ALS 
                        alpha_dn_Nv(nn)=alpha_dn_Nv(mm); 
                        alpha_dn_Pv(nn)=alpha_dn_Pv(mm); 
                        %% 
                    end 
                end 
            end 
        end 
    end 
end 
alpha_up_p=[];alpha_dn_p=[];alpha_up_pv=[];alpha_dn_pv=[]; 
alpha_up_p = alpha_up; 
alpha_dn_p = alpha_dn; 
alpha_up_pv = alpha_upv; 
alpha_dn_pv = alpha_dnv; 
  
%horizontal evasive maneuver 
for jj=1:length(alpha_up), 
    alpha_up_wrap = wrap_mpi2pi(alpha_up(jj)); 
    alpha_dn_wrap = wrap_mpi2pi(alpha_dn(jj)); 
    alpha_up_norm = alpha_up_wrap-alpha; 
    alpha_dn_norm = alpha_dn_wrap-alpha; 
    if alpha_up_norm<alpha_dn_norm, 
        alpha_dn_norm=alpha_dn_norm-2*pi; 
    end 
    % 
    if flag == 0, 
        if alpha_up_dot(jj)>=0 && alpha_dn_dot(jj)<=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            else 
                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            end 
        elseif alpha_up_dot(jj)<=0 && alpha_dn_dot(jj)>=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            else 
                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            end 
        elseif alpha_up_dot(jj)>=0 && alpha_dn_dot(jj)>=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 



 

179 

                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            else 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            end 
        elseif alpha_up_dot(jj)<=0 && alpha_dn_dot(jj)<=0, 
            if abs(alpha_up_dot(jj))<=abs(alpha_dn_dot(jj)), 
                angle=alpha_up(jj); 
                angle_dot = alpha_up_dot(jj); flag=1; 
            else 
                angle=alpha_dn(jj); 
                angle_dot = alpha_dn_dot(jj); flag=2; 
            end 
        end 
    elseif flag==1, 
        angle=alpha_up(jj); 
        angle_dot = alpha_up_dot(jj); 
    elseif flag==2, 
        angle=alpha_dn(jj); 
        angle_dot = alpha_dn_dot(jj); 
    end 
    angle_dot_vec=angle_dot; 
    % 
    if ((alpha_up_norm >=0.0) && (alpha_dn_norm<=0)) ||... 
            ((alpha_up_norm <= -3*pi/2) && (alpha_dn_norm <=-2*pi)) 
||... 
            ((alpha_up_norm >= 2*pi) && (alpha_dn_norm >=3*pi/2)), 
        evasion = 1; 
        % 
        % proportional gain 
        N = 2; 
        % acceleration command 
        a = N*V_O*angle_dot; 
        % UAS accleration command components 
        vdot(jj) = -a * sin(angle - alpha); 
        alphadot(jj) = -a/V_O * cos(angle - alpha); 
  
    else 
        alphadot(jj) = 0.0; 
        vdot(jj) = 0.0; 
    end 
  
end 
  
%vertical evasive maneuver 
for jj=1:length(alpha_upv), 
    alpha_up_wrapv = wrap_mpi2pi(alpha_upv(jj)); 
    alpha_dn_wrapv = wrap_mpi2pi(alpha_dnv(jj)); 
    alpha_up_normv = alpha_up_wrapv-gamma; 
    alpha_dn_normv = alpha_dn_wrapv-gamma; 
    if alpha_up_normv<alpha_dn_normv, 
        alpha_dn_normv=alpha_dn_normv-2*pi; 
    end 
    % 



 

180 

    if flagv == 0, 
        if alpha_up_dotv(jj)>=0 && alpha_dn_dotv(jj)<=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            else 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            end 
        elseif alpha_up_dotv(jj)<=0 && alpha_dn_dotv(jj)>=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            else 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            end 
        elseif alpha_up_dotv(jj)>=0 && alpha_dn_dotv(jj)>=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            else 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            end 
        elseif alpha_up_dotv(jj)<=0 && alpha_dn_dotv(jj)<=0, 
            if abs(alpha_up_dotv(jj))<=abs(alpha_dn_dotv(jj)), 
                anglev=alpha_upv(jj); 
                angle_dotv = alpha_up_dotv(jj); flagv=1; 
            else 
                anglev=alpha_dnv(jj); 
                angle_dotv = alpha_dn_dotv(jj); flagv=2; 
            end 
        end 
    elseif flagv==1, 
        anglev=alpha_upv(jj); 
        angle_dotv = alpha_up_dotv(jj); 
    elseif flagv==2, 
        anglev=alpha_dnv(jj); 
        angle_dotv = alpha_dn_dotv(jj); 
    end 
    angle_dot_vecv=angle_dotv; 
    %ALS 
    anglev=wrap_mpi2pi(anglev); 
    % 
    if (alpha_up_normv >=0.0) && (alpha_dn_normv<=0), 
        evasionv = 1; 
        % 
        % proportional gain 
        N = 2; 
        % acceleration command 
        a = N*V_O*angle_dotv; 
        % UAS accleration command components 
        vdotv(jj) = -a * sin(anglev - gamma); 
        gammadot(jj) = -a/V_O * cos(anglev - gamma); 



 

181 

  
    else 
        gammadot(jj) = 0.0; 
        vdotv(jj) = 0.0; 
    end 
  
end 
  
if isempty(alpha_up), 
    alphadot=[]; 
    vdot=[]; 
end 
if isempty(alpha_upv), 
    gammadot=[]; 
    vdotv=[]; 
end 
  
%Choose command from vector of potential commands 
if evasion == 1 && evasionv ==1 && norm([alphadot vdot gammadot 
vdotv])~=0, 
    %Conflict Properties 
    conflict = 1; 
    cflct_cone = find(alphadot~=0); 
    cflct_int = []; 
    for ww=1:length(cflct_cone), 
        for xx=1:length(acount), 
            if cflct_cone(ww)<=sum(acount(1:xx)), 
                if isempty(cflct_int) || xx~=cflct_int(end), 
                    cflct_int=[cflct_int xx]; %record index of intruder 
                    break; 
                end 
            end 
        end 
        if cflct_int(end)==length(acount), 
            break; %break loop if there is already a conflict with the 
last intruder  
        end 
    end 
    cflct_conev = find(gammadot~=0); 
    cflct_intv = []; 
    for ww=1:length(cflct_conev), 
        for xx=1:length(acountv), 
            if cflct_conev(ww)<=sum(acountv(1:xx)), 
                if isempty(cflct_intv) || xx~=cflct_intv(end), 
                    cflct_intv=[cflct_intv xx]; %record index of 
intruder 
                    break; 
                end 
            end 
        end 
        if cflct_intv(end)==length(acountv), 
            break; %break loop if there is already a conflict with the 
last intruder  
        end 



 

182 

    end 
     
    %Commands 
    sad=sum(alphadot); 
    ssad=sign(sad); 
    sadv=sum(gammadot); 
    ssadv=sign(sadv); 
    if ssad>0, 
        i1=find(alphadot>0); 
        [mad,imad]=min(alphadot(i1)); 
        i11=i1(imad); 
        vdotc1 = vdot(i11); 
        alphadotc = alphadot(i11); 
    elseif ssad<0, 
        i2=find(alphadot<0); 
        [mad2,imad2]=max(alphadot(i2)); 
        i22=i2(imad2); 
        vdotc1 = vdot(i22); 
        alphadotc = alphadot(i22); 
    else 
        vdotc1 = 0.0; 
        alphadotc = 0.0; 
        flag=0; 
        evasion=0; 
    end 
    if ssadv>0, 
        i1=find(gammadot>0); 
        [mad,imad]=min(gammadot(i1)); 
        i11=i1(imad); 
        if ~isempty(i11) 
            vdotc2 = vdotv(i11); 
            gammadotc = gammadot(i11)-vdotc1/V_O*sin(gamma); 
        end 
    elseif ssadv<0, 
        i2=find(gammadot<0); 
        [mad2,imad2]=max(gammadot(i2)); 
        i22=i2(imad2); 
        if ~isempty(i22) 
            vdotc2 = vdotv(i22); 
            gammadotc = gammadot(i22)-vdotc1/V_O*sin(gamma); 
        end 
    else 
        vdotc2 = 0.0; 
        gammadotc = -vdotc1/V_O*sin(gamma); 
        flagv=0; 
        evasionv=0; 
    end 
    vdotc = vdotc1*cos(gamma) + vdotc2; 
else 
    conflict = 0; 
    cflct_int = []; 
    cflct_intv = []; 
    vdotc = 0.0; 
    alphadotc = 0.0; 
    gammadotc = 0.0; 



 

183 

    evasion = 0; 
    evasionv = 0; 
    flag=0; 
    flagv=0; 
end 
  
% cc_plot(Ni,r,x_O,y_O,z_O,V_O,alpha,gamma,x_F,y_F,z_F,V_F,... 
%     
beta,chi,R,Rv,VO,violation,x_ccv,y_ccv,z_ccv,alpha_up_p,alpha_dn_p,... 
%     alpha_up_pv,alpha_dn_pv,sensvol,acount,acountv) 
  
%Convert Collision Cone commands to Aircraft commands 
psidotc=-alphadotc; 
gamdotc=gammadotc; 
acc=vdotc; 
 

F_COLLISIONCONE4 
 
function [eta_up,eta_dn,eta_up_dot,eta_dn_dot] = 
f_collisioncone4(mu,nu,p,mudot,nudot,pdot) 
  
% FUNCTION f_collisioncone2 
% 
% [alpha_up,alpha_dn] = f_collisioncone2(mu,nu,p,mudot,nudot,pdot) 
% 
% INPUTS: 
%  mu = beta - theta0 
%  nu = V_A/V_B 
%  p  = R/sqrt(r0^2-R^2) - For Circular Object 
%     = abs(tan(psi0/2)) - For Irregular Shaped Object 
%  mudot = betadot - theta0dot 
%  nudot = A_A/V_B - nu*A_F/V_F 
%  pdot = -Vr*p^3*r0/(R^2) 
% 
% OUTPUTS: 
%  eta_up - upper angular collision cone limit 
%  eta_dn - lower angular collision cone limit 
%  
% This function calculates the angular limits of the collision cone 
from  
% the point A to the object B. There can be a double collision cone 
% depending on the geometry of the encounter. In this case, there will 
be 
% two sets of angular limits. 
  
A = (p*cos(mu) + sin(mu))/sqrt(p^2+1); 
zeta = asin(p/sqrt(p^2+1)); 
Atilde = (p*cos(mu) - sin(mu))/sqrt(p^2+1); 
zetatilde = pi - zeta; 
  
Adot = pdot*(cos(zeta)*cos(mu) - 
cos(zeta)^2*sin(zeta)*(p*cos(mu)+sin(mu))) + ... 



 

184 

    mudot*cos(zeta)*(cos(mu)-p*sin(mu)); 
zetadot = pdot*cos(zeta)^2; 
Atildedot = pdot*(-cos(zetatilde)*cos(mu) - 
cos(zetatilde)^2*sin(zetatilde)*(p*cos(mu)-sin(mu))) + ... 
    mudot*cos(zetatilde)*(cos(mu)+p*sin(mu)); 
zetatildedot = -zetadot; 
  
% Collision Cone Boundaries 
% Satisfy (Vr0 < 0) 
if cos(mu)/nu >= 1, 
    N1_up = []; 
    N1_dn = []; 
    %no cone 
    eta_up = []; 
    eta_dn = []; 
    eta_up_dot = []; 
    eta_dn_dot = []; 
    return; 
elseif (cos(mu)/nu >= -1 && cos(mu)/nu < 1), 
    N1_up = acos(cos(mu)/nu); 
    N1_dn = -acos(cos(mu)/nu); 
elseif cos(mu)/nu < -1, 
    N1_up = 2*pi; 
    N1_dn = 0; 
end 
% Satisfy (Vth0^2 <= p^2*Vr0^2) -> (Vth0 <= -p*Vr0) 
if A/nu > 1, 
    N21_up = []; 
    N21_dn = []; 
    N21_up_dot = []; 
    N21_dn_dot = []; 
elseif (A/nu >= 0 && A/nu <= 1), 
    N21_up = pi - asin(A/nu) - zeta; 
    N21_dn = asin(A/nu) - zeta; 
    N21_up_dot = tan(pi-N21_up-zeta)*nudot/nu-Adot/(cos(pi-N21_up-
zeta)*nu)-zetadot; 
    N21_dn_dot = Adot/(cos(N21_dn+zeta)*nu)-tan(N21_dn+zeta)*nudot/nu-
zetadot; 
elseif (A/nu > -1 && A/nu < 0), 
    N21_up = -pi - asin(A/nu) - zeta; 
    N21_dn = asin(A/nu) - zeta; 
    N21_up_dot = tan(-pi-N21_up-zeta)*nudot/nu-Adot/(cos(-pi-N21_up-
zeta)*nu)-zetadot; 
    N21_dn_dot = Adot/(cos(N21_dn+zeta)*nu)-tan(N21_dn+zeta)*nudot/nu-
zetadot; 
elseif A/nu <= -1, 
    N21_up = 2*pi; 
    N21_dn = 0; 
    N21_up_dot = 0; 
    N21_dn_dot = 0; 
end 
% Satisfy (Vth0^2 <= p^2*Vr0^2) -> (p*Vr0 <= Vth0) 
if Atilde/nu > 1, 
    N22_up = []; 
    N22_dn = []; 



 

185 

    N22_up_dot = []; 
    N22_dn_dot = []; 
elseif (Atilde/nu >= 0 && Atilde/nu <= 1), 
    N22_up = pi - asin(Atilde/nu) - zetatilde; 
    N22_dn = asin(Atilde/nu) - zetatilde; 
    N22_up_dot = tan(pi-N22_up-zetatilde)*nudot/nu-Atildedot/(cos(pi-
N22_up-zetatilde)*nu)-zetatildedot; 
    N22_dn_dot = Atildedot/(cos(N22_dn+zetatilde)*nu)-
tan(N22_dn+zetatilde)*nudot/nu-zetatildedot; 
elseif (Atilde/nu > -1 && Atilde/nu < 0), 
    N22_up = -pi - asin(Atilde/nu) - zetatilde; 
    N22_dn = asin(Atilde/nu) - zetatilde; 
    N22_up_dot = tan(-pi-N22_up-zetatilde)*nudot/nu-Atildedot/(cos(-pi-
N22_up-zetatilde)*nu)-zetatildedot; 
    N22_dn_dot = Atildedot/(cos(N22_dn+zetatilde)*nu)-
tan(N22_dn+zetatilde)*nudot/nu-zetatildedot; 
elseif Atilde/nu <= -1, 
    N22_up = 2*pi; 
    N22_dn = 0; 
    N22_up_dot = 0; 
    N22_dn_dot = 0; 
end 
% N21 |-| N22 
if ((A/nu > 1) || (Atilde/nu >1)), 
    N2_up = []; 
    N2_dn = []; 
    N2_up_dot = []; 
    N2_dn_dot = []; 
elseif (A/nu > -1 && A/nu <= 1) && (Atilde/nu > -1 && Atilde/nu <= 1), 
    if (nu >= 1) && (round(zeta*1e10)/1e10 >= 
round((0.5*abs(asin(A/nu)+asin(Atilde/nu)))*1e10)/1e10), 
        N2_up = N22_up; 
        N2_dn = N21_dn; 
        N2_up_dot = N22_up_dot; 
        N2_dn_dot = N21_dn_dot; 
    elseif (nu < 1) && ((zeta >= 0) && (zeta <= 
0.5*abs(asin(A/nu)+asin(Atilde/nu)))), 
        N2_up = [N22_up N21_up]; 
        N2_dn = [N21_dn N22_dn]; 
        N2_up_dot = [N22_up_dot N21_up_dot]; 
        N2_dn_dot = [N21_dn_dot N22_dn_dot]; 
    else 
        N2_up = []; 
        N2_dn = []; 
        N2_up_dot = []; 
        N2_dn_dot = []; 
    end 
else 
    if (A/nu <= -1) && ((Atilde/nu <= 1) && (Atilde/nu > -1)), 
        N2_up = N22_up; 
        N2_dn = N22_dn; 
        N2_up_dot = N22_up_dot; 
        N2_dn_dot = N22_dn_dot; 
    elseif (Atilde/nu <= -1) && ((A/nu <= 1) && (A/nu > -1)), 
        N2_up = N21_up; 



 

186 

        N2_dn = N21_dn; 
        N2_up_dot = N21_up_dot; 
        N2_dn_dot = N21_dn_dot; 
    elseif (A/nu <= -1) && (Atilde/nu <= -1), 
        N2_up = 2*pi; 
        N2_dn = 0; 
        N2_up_dot = 0; 
        N2_dn_dot = 0; 
    end 
end 
  
eta_up = N2_up; 
eta_dn = N2_dn; 
eta_up_dot = N2_up_dot; 
eta_dn_dot = N2_dn_dot; 
  
 
WRAP_MPI2PI 
 
function [angleOUT] = wrap_mpi2pi(angleIN) 
for ii=1:length(angleIN), 
    if angleIN(ii)>pi, 
        angleOUT(ii) = angleIN(ii) - 2*pi; 
    elseif angleIN(ii)<-pi, 
        angleOUT(ii) = angleIN(ii) + 2*pi; 
    else 
        angleOUT(ii) = angleIN(ii); 
    end 
end 
 
 
WRAP_NEG 
 
function [angleOUT] = wrap_neg(angleIN) 
angleOUT=angleIN; 
for ii=1:length(angleIN), 
    while angleOUT(ii)>0, 
        angleOUT(ii) = angleOUT(ii) - 2*pi;  
    end 
end 
 
 
WRAP_POS 
 
function [angleOUT] = wrap_pos(angleIN) 
angleOUT=angleIN; 
for ii=1:length(angleIN), 
    while angleOUT(ii)<0, 
        angleOUT(ii) = angleOUT(ii) + 2*pi;  
    end 
end 
 



 

187 

CC_PLOT 
 
function cc_plot(Ni,r,x_O,y_O,z_O,V_O,alpha,gamma,x_F,y_F,z_F,V_F,... 
    
beta,chi,R,Rv,VO,violation,x_ccv,y_ccv,z_ccv,alpha_up_p,alpha_dn_p,... 
    alpha_up_pv,alpha_dn_pv,sensvol,acount,acountv) 
  
persistent counter 
global Ni_loop 
if isempty(counter), 
    figure(1) 
    clf 
    counter=1; 
end 
if counter<=Ni_loop, 
    figure(1) 
    hold on 
    counter=counter+1; 
else 
    figure(1) 
    clf 
    hold on 
    counter=2; 
end 
  
%Calculate velocity components 
Vx_O = V_O*cos(alpha)*cos(gamma); 
Vy_O = V_O*sin(alpha)*cos(gamma); 
Vz_O = V_O*sin(gamma); 
Vx_F = V_F.*cos(beta).*cos(chi); 
Vy_F = V_F.*sin(beta).*cos(chi); 
Vz_F = V_F.*sin(chi); 
  
anglecircle = linspace(0,2*pi,200); 
  
xcircle = 
x_F*ones(1,length(anglecircle))+R*ones(Ni,1)*cos(anglecircle); 
ycircle = 
y_F*ones(1,length(anglecircle))+R*ones(Ni,1)*sin(anglecircle); 
zcircle = z_F*ones(1,length(anglecircle)); 
xcirclev = 
(x_ccv+x_O)*ones(1,length(anglecircle))+Rv.*ones(Ni,1).*cos(alpha)*cos(
anglecircle); 
ycirclev = 
(y_ccv+y_O)*ones(1,length(anglecircle))+Rv.*ones(Ni,1).*sin(alpha)*cos(
anglecircle); 
zcirclev = 
(z_ccv+z_O)*ones(1,length(anglecircle))+Rv.*ones(Ni,1)*sin(anglecircle)
; 
  
llcount=1; 
llcountv=1; 
% figure(1) 
% clf 



 

188 

% hold on 
view(-30,30) 
%view(0,90) 
%view(0,0) 
for kk = 1:Ni, 
    if (~isempty(alpha_up_p) || ~isempty(alpha_up_pv)) && violation == 
0, 
        plot3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],'b-*') 
        quiver3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],[Vx_O 
Vx_F(kk)],[Vy_O Vy_F(kk)],[Vz_O Vz_F(kk)],'AutoScale','off') 
        if sensvol(kk) == 1; 
            
hdl1=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k');set(hdl1,'
Color',[212 208 200]/255) 
            hdl2=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-
VO,'k');set(hdl2,'Color',[212 208 200]/255) 
            
hdl3=plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k');set(hdl3,'
Color',[212 208 200]/255) 
        else 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k') 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-VO,'k') 
            plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k') 
        end 
        plot3(x_ccv+x_O,y_ccv+y_O,z_ccv+z_O,'c*') 
        for ll=llcount:acount(kk)+llcount-1, 
            plot3([x_O r(kk)*cos(alpha_dn_p(ll))+x_O],[y_O 
r(kk)*sin(alpha_dn_p(ll))+y_O],[z_O z_O],'r') 
            plot3([x_O r(kk)*cos(alpha_up_p(ll))+x_O],[y_O 
r(kk)*sin(alpha_up_p(ll))+y_O],[z_O z_O],'r') 
            
quiver3(r(kk)/2.*cos(alpha_up_p(ll))+x_O,r(kk)/2.*sin(alpha_up_p(ll))+y
_O,z_O,sin(alpha_up_p(ll)),-
cos(alpha_up_p(ll)),0,'g','AutoScale','off') 
            
quiver3(r(kk)/2.*cos(alpha_dn_p(ll))+x_O,r(kk)/2.*sin(alpha_dn_p(ll))+y
_O,z_O,-
sin(alpha_dn_p(ll)),cos(alpha_dn_p(ll)),0,'g','AutoScale','off') 
            llcount=llcount+1; 
        end 
        for ll=llcountv:acountv(kk)+llcountv-1, 
            plot3([x_O r(kk)*cos(alpha_dn_pv(ll))*cos(alpha)+x_O],[y_O 
r(kk)*cos(alpha_dn_pv(ll))*sin(alpha)+y_O],[z_O 
r(kk)*sin(alpha_dn_pv(ll))+z_O],'r') 
            plot3([x_O r(kk)*cos(alpha_up_pv(ll))*cos(alpha)+x_O],[y_O 
r(kk)*cos(alpha_up_pv(ll))*sin(alpha)+y_O],[z_O 
r(kk)*sin(alpha_up_pv(ll))+z_O],'r') 
            
quiver3(r(kk)/2.*cos(alpha_up_pv(ll))*cos(alpha)+x_O,r(kk)/2.*cos(alpha
_up_pv(ll))*sin(alpha)+y_O,r(kk)/2.*sin(alpha_up_pv(ll))+z_O,sin(alpha_
up_pv(ll))*cos(alpha),sin(alpha_up_pv(ll))*sin(alpha),-
cos(alpha_up_pv(ll)),'g','AutoScale','off') 
            
quiver3(r(kk)/2.*cos(alpha_dn_pv(ll))*cos(alpha)+x_O,r(kk)/2.*cos(alpha
_dn_pv(ll))*sin(alpha)+y_O,r(kk)/2.*sin(alpha_dn_pv(ll))+z_O,-



 

189 

sin(alpha_dn_pv(ll))*cos(alpha),-
sin(alpha_dn_pv(ll))*sin(alpha),cos(alpha_dn_pv(ll)),'g','AutoScale','o
ff') 
            llcountv=llcountv+1; 
        end 
         
    elseif violation == 1, 
        plot3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],'r-*') 
        quiver3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],[Vx_O 
Vx_F(kk)],[Vy_O Vy_F(kk)],[Vz_O Vz_F(kk)],'AutoScale','off') 
        plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'r') 
        plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-VO,'r') 
        plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'r') 
        plot3(x_ccv+x_O,y_ccv+y_O,z_ccv+z_O,'c*') 
         
    else 
        plot3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],'b-*') 
        quiver3([x_O x_F(kk)],[y_O y_F(kk)],[z_O z_F(kk)],[Vx_O 
Vx_F(kk)],[Vy_O Vy_F(kk)],[Vz_O Vz_F(kk)],'AutoScale','off') 
        if sensvol(kk) == 1; 
            
hdl1=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k');set(hdl1,'
Color',[212 208 200]/255) 
            hdl2=plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-
VO,'k');set(hdl2,'Color',[212 208 200]/255) 
            
hdl3=plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k');set(hdl3,'
Color',[212 208 200]/255) 
        else 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)+VO,'k') 
            plot3(xcircle(kk,:),ycircle(kk,:),zcircle(kk,:)-VO,'k') 
            plot3(xcirclev(kk,:),ycirclev(kk,:),zcirclev(kk,:),'k') 
        end 
        plot3(x_ccv+x_O,y_ccv+y_O,z_ccv+z_O,'c*') 
         
    end 
end 
hold off 
plotlim=9; 
%axis([x_O-plotlim x_O+plotlim y_O-plotlim*8/10 y_O+plotlim*8/10 z_O-
plotlim/3 z_O+plotlim/3]) 
axis equal 
  
 
  



 

190 

Bibliography 

[1] Department of Defense, "Unmanned Systems Roadmap 2007-2032," 2007. 

[2] James C Neidhoefer, Christopher S Gibson, Maithilee Kunda, and Eric N Johnson, 
"Deteminism in Autonomy for Applications in the National Airspace System 
(NAS)," AIAA Infotech@Aerospace, Rohnert Park, CA, 2007. 

[3] Derek Kingston, Randal Beard, and Ryan Holt, "Decentralized Perimeter 
Surveillance Using a Team of UAVs," Transactions on Robotics, vol. 24, no. 6, 
December 2008. 

[4] James K Kuchar and Lee C Yang, "Survey of Conflict Detection and Resolution 
Modeling Methods," AIAA Guidance, Navigation, and Control Conference, New 
Orleans, LA, 1997. 

[5] James K Kuchar and Lee C Yang, "A Review of Conflict Detection and Resolution 
Modeling Methods," Transactions on Intelligent Transportation Systems, vol. 1, 
no. 4, December 2000. 

[6] Gilles Dowek and Cesar Munoz, "Conflict Detection and Resolution for 1,2.N 
Aircraft," 7th Aviation Technology, Integration, and Operations Conference, 
Belfast, Northern Ireland, 2007. 

[7] Animesh Chakravarthy and Debasish Ghose, "Obstacle Avoidance in a Dynamic 
Environment: A Collision Cone Approach," Transactions on Systems, Man, and 
Cybernetics - Part A: Systems and Humans, vol. 28, no. 5, September 1998. 

[8] Karl D Bilimoria, "A Geometric Optimization Approach to Aircraft Conflict 
Resolution," AIAA Guidance, Navigation, and Control Conference and Exhibit, 
Denver, CO, 2000. 

[9] Jennifer Goss, Rahul Rajvanshi, and Kamesh Subbarao, "Aircraft Conflict Detection 
and Resolution using Mixed Geometric and Collision Cone Approaches," AIAA 
Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, 
2004. 

  

 



 

191 

[10] C Carbone, U Ciniglio, F Carraro, and S Luongo, "A Novel 3D Geometric 
Algorithm for Aircraft Autonomous Collision Avoidance," Proceedings of the 
45th Conference on Decision & Control, San Diego, CA, 2006. 

[11] Karin Sigurd and Jonathan How, "UAV Trajectory Design Using Total Field 
Collision Avoidance," AIAA Guidance, Navigation, and Control Conference and 
Exhibit, Austin, TX, 2003. 

[12] Amirreza Rahmani, Kunihiko Kosuge, Takashi Tsukamaki, and Mehran Mesbahi, 
"Multiple UAV Deconfliction via Navigation Functions," AIAA Guidance, 
Navigation and Control Conference and Exhibit, Honolulu, HI, 2008. 

[13] Maria Prandini, Jianghai Hu, John Lygeros, and Shankar Sastry, "A Probablistic 
Approach to Aircraft Conflict Detection," Transactions on Intelligent 
Transportation Systems, vol. 1, no. 4, December 2000. 

[14] Maria Prandini, John Lygeros, Arnab Nilim, and Shankar Sastry, "Randomized 
Algorithms for Probablistic Aircraft Conflict Detection," Proceedings of the 38th 
Conference on Decision & Control, Phoenix, AZ, 1999. 

[15] Brad D Kelly and Solomon D Picciotto, "Probability Based Optimal Collision 
Avoidance Maneuvers," Space 2005, Long Beach, CA, 2005. 

[16] Kwang-Yeon Kim, Jung-Woo Park, and Min-Jea Tahk, "UAV Collision Avoidance 
Using Probablistic Method in 3-D," International Conference on Control, 
Automation, and Systems, Seoul, Korea, 2007. 

[17] Chang-Su Park, Min-Jea Tahk, and Hyochoong Bang, "Multiple Aerial Vehicle 
Formation Using Swarm Intelligence," AIAA Guidance, Navigation, and Control 
Conference and Exhibit, Austin, TX, 2003. 

[18] Craig W Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioral Model," 
Computer Graphics, vol. 21, no. 4, July 1987. 

[19] Craig W Reynolds, "Steering Behaviors for Autonomous Characters," Proceedings 
of Game Developers Conference, San Jose, CA, 1999, pp. 763-782. 

  



 

192 

[20] Yu Gu, Girish K Sagoo, Brad Seanor, Giampiero Campa, and Marcello R 
Napolitano, "Curvature-Velocity-Orientation Method for UAV Collision 
Avoidance," AIAA Guidance, Navigation and Control Conference and Exhibit, 
Honolulu, HI, 2008. 

[21] Todd Farley and Heinz Herzbanger, "Fast-Time Simulation Evaluation of a Conflcit 
Resolution Algorithm Under High Air Traffic Demand," Proceedings of the 7th 
USA/Europe Air Traffic Management R&D Seminar, Barcelona, Spain, 2007. 

[22] Russell A Paielli, "Tactical Conflict Resolution Using Vertical Maneuvers in En 
Route Airspace," Journal of Aircraft, vol. 45, no. 6, 2008. 

[23] Yoko Watanabe, Anthony J Calise, Eric N Johnson, and Johnny H Evers, 
"Minimum-Effort Guidance for Vision-Based Collision Avoidance," AIAA 
Atmospheric Flight Mechanics Conference and Exhibit, Keystone, CO, 2006. 

[24] Yoko Watanabe, Anthony J Calise, and Eric N Johnson, "Vision-Based Obstacle 
Avoidance for UAVs," AIAA Guidance, Navigation and Control Conference and 
Exhibit, Hilton Head, SC, 2007. 

[25] Giancarmine Fasano et al., "Multisensor based Fully Autonomous Non-Cooperative 
Collision Avoidance System for UAVs," AIAA Infotech@Aerospace, Rohnert 
Park, CA, 2007. 

[26] Eric Portilla, Alex Fung, Won-Zon Chen, Omid Shakernia, and Thomas Molnar, 
"Sense and Avoid (SAA) & Traffic Alert and Collision Avoidance System 
(TCAS) Integration for Unmanned Aerial Systems (UAS)," AIAA 
Infotech@Aerospace, Rohnert Park, CA, 2007. 

[27] Austin L Smith, Dennis M Coulter, and Christopher S Jones, "UAS Collision 
Encounter Modeling and Avoidance Algorithm Development for Simulating 
Collision Avoidance," AIAA Modeling and Simulation Technologies Conference 
and Exhibit, Honolulu, HI, 2008. 

[28] Su-Cheol Han and Hyochoong Bang, "Proportional Navigation-Based Optimal 
Collision Avoidance for UAVs," 2nd International Conference on Autonomous 
Robots and Agents, Palmerston North, New Zealand, 2004. 

  



 

193 

[29] Su-Cheol Han, "Proportional Navigation-Based Optimal Collision Avoidance for 
UAVs," Korea Advanced Institute of Science and Technology, Thesis MAE 
20033668, 2005. 

[30] U. S. Shukla and P. R. Mahapatra, "The Proportional Navigation Dilemma - Pure or 
True?," Transactions on Aerospace and Electronics Systems, vol. 26, no. 2, 
March 1990. 

[31] James B Engle, "Fiscal Year 2006 Air Force Science and Technology," Office of the 
Deputy Assistant Secretary of the Air Force for Science, Technology, and 
Engineering, Presentation 2005. 

[32] Department of Defense, "Unmanned Systems Roadmap 2005-2030," 2005. 

[33] Defense Update. [Online]. http://www.defense-
update.com/products/n/nighthawk.htm 

[34] Procerus Technologies, Kestrel User Guide, 2008. 

[35] Federal Aviation Administration, "Unmanned Aircraft Systems Operation in the 
U.S. National Airspace System," Unmanned Aircraft Program Office AIR-160, 
Interim Operational Approval Guidance 08-01 2008. 

[36] Rep James L. Oberstar, "FAA Reauthorization Act of 2009," HOUSE OF 
REPRESENTATIVES, Bill H.R. 915, 2009. 

[37] Troy H Vantrease, "Development and Employment of a Semi-Autonomous Cursor 
on Target Navigation System for Micro Air Vehicles," Air Force Institute of 
Technology, Wright-Patterson AFB, Thesis AFIT/GAE/ENY/08-J06, 2008. 

 

 

http://www.defense-update.com/products/n/nighthawk.htm�
http://www.defense-update.com/products/n/nighthawk.htm�


 

194 

Vita 

Austin L. Smith was born in Lafayette, IN. He attended Purdue University and 

graduated With Distinction in May of 2005 with a Bachelor of Science Degree in 

Aeronautical and Astronautical Engineering. Austin started his career as an engineer in 

the Air Force Research Laboratory’s Air Vehicles Directorate. He is currently an 

engineer with Modern Technology Solutions, Inc., and is involved in UAS airspace 

access efforts and sense and avoid developments.



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other 
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

26-03-2009 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

March 2008 – March 2009 
4.  TITLE AND SUBTITLE 
 
UAS Collision Avoidance Algorithm That
Minimizes The Impact On Route Surveillance 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

 5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Smith, Austin L. 
 
 
 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management 
  (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GAE/ENY/09-M18 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
  
Air Force Research Laboratory, Sensors Directorate, Dr. Alok Das, 2241 
Avionics Circle, WPAFB OH 45433  
 

10. SPONSOR/MONITOR’S ACRONYM(S) 
AFRL/RY 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
14. ABSTRACT  
 A collision avoidance algorithm is developed and implemented that is applicable to different types of unmanned aerial 
systems ranging from a single platform with the ability to perform all collision avoidance functions independently to multiple 
vehicles performing functions as a cooperative group with collision avoidance commands computed at a ground station. The 
collision avoidance system is exercised and tested using operational hardware and platforms and is demonstrated in representative 
missions similar to those planned for operational systems. The results presented are the first known flight tests of a global, three-
dimensional, geometric collision avoidance system on an unmanned aircraft system. Novel developments using an aggregated 
collision cone approach allows each unmanned aircraft to detect and avoid collisions with two or more other aircraft 
simultaneously. The collision avoidance system is implemented using a miniature unmanned aircraft with an onboard autopilot. 
Various test cases are used to demonstrate the algorithms robustness to different collision encounters. Two-ship encounters at 
various engagement angles are flight tested. The flight test results are compared with ideal, software-in-the-loop, and hardware-
in-the-loop tests. 

15. SUBJECT TERMS 
     collision avoidance, unmanned aircraft, conflict detection and resolution, autonomous guidance 

16. SECURITY CLASSIFICATION OF: 
Unclassified 

17. LIMITATION 
OF  
     ABSTRACT 
 
 

UU 

18. 
NUMBER  
      OF 
      PAGES 
 

213 

19a.  NAME OF RESPONSIBLE PERSON 
Frederick G. Harmon, Lt Col, USAF 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 7478 
(Frederick.Harmon@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	Background
	Motivation
	Problem Statement
	Research Objectives/Hypothesis
	Research Focus
	Methodology
	Assumptions/Scope
	Preview

	II. Literature Review
	Chapter Overview
	Methods
	Geometric
	Force Field
	Probabilistic
	Other Methods
	Flight Tests and Notable Simulations
	Summary

	III. Methodology
	Chapter Overview
	Theory and Algorithms
	Hardware
	Implementation
	MATLAB Algorithm Deployment
	C++ Application and GUI Development
	Collision Avoidance Algorithm/Autopilot Interface

	IV. Analysis and Results
	Chapter Overview
	Simulation Results
	Ideal
	Software-in-the-Loop
	Hardware-in-the-Loop
	Flight Test Results
	Pre-flight Ground Testing
	Flight Testing
	Flight Test Summary

	V. Conclusions and Recommendations
	Chapter Overview
	Conclusions of Research
	Significance of Research
	Recommendations for Action
	Recommendations for Future Research
	Summary

	Appendix A:  Collision Avoidance Algorithm/Virtual Cockpit Interface
	Appendix B:  Collision Cone Boundary Rates
	Appendix C:  Ideal Simulation Plots
	Appendix D:  SIL Simulation Plots
	Appendix E:  HIL Simulation Plots
	Appendix F:  Flight Test Plots
	Appendix G:  Flight Test Procedures
	Appendix H:  Collision Avoidance Algorithm MATLAB Code
	Bibliography
	Vita

